
AD-Ri5@ 825 PROBLEMS IN DECENTRALIZED DECISION MAKING AND 1/3
COMPUTRTION(U) MASSACHUSETTS INST OF TECH CAMBRIDGE LAS
FOR INFORMATION AND DECISION SYSTEMS J N TSITSIKLIS

UNCLASSIFIED DEC 84 LIDS-TH-i424 N88614-77-C-0532 F/G 5/2 NLIumhllllhElll
lllmlllllllll

Ehhhhhhhmmmh
mhEEEmhhhhhhEISllflfllfllfllfllflfl



W5a. .5

1111111.0.8
IIIII2 L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I

I°

I



DECEMBER 1984 LIDS-TH-1424

Research Supported By:
* ' Offjie of Naval Reseach SContracts ONR/N0014-77-C-0532

CNI (NR 041-519)
ONR/N00014-84-K-0519
(NR 649-003)

0o

SLf

PROBLEMS IN DECENTRALIZED

DECISION MAKING AND

COMPUTATION

DTIC
ELECTE
FEBS M98 J

John N. Tsitsiklis S

L&J ;doe -nnt l''s ber, opprovto I
7,;icre ~'and salf2 its

Laboratory for Information and Decision Systems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

85 01 2 :

" " % . " -*i

• .. - . . . _ . ,. .



DECEMBER 1984 L~-H12

John N. Tsitsiklis

* This report is based on the unaltered thesis of John N. Tsitsiklis, submitted
in partial fulfillment of the requirements for the degree of Doctor of Philos-
ophy at the Massachusetts Institute of Technology in November 1984. The
research was conducted at the M.I.T. Laboratory for Information and Decision
Systems, with support provided by the Office of Naval Research under contracts

* ONR/NO0OI4-77-C-0532(NR 041-S19) and N00014-84-K-0519(NR 649-003).

I Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

..............................



PROBLEMS IN DECENTRALIZED DECISION MAKING AND COMPUTATION

by

John Nikolaos Tsitsiklis

B.S., Massachusetts Institute of Technology
(1980)

S.M., Massachusetts Institute of Technology
(1981)

SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUISETTS INSTITUTE OF TECHNOLOGY

November 1984

Massachusetts Institute of Technology 1984

Signature of the Author ......................................... ............
Department of Electrical Engineering and Computer

6 Science, November, 1984

[ Certified by ..................................................... ..........
4 Michael Athans

Thesis Supervisor

Accepted by .................... .................... .......... .............
SArthur C. Smith

Chairman, Departmental Graduate Committee

618 ).,



PROBLEMS IN DECENTRALIZED DECISION MAKING AND COMPUTATION

by

John Nikolaos Tsitsiklis

Submitted to the Department of Electrical Engineering and Computer
Science on November 20, 1984 in partial fulfillment of the require-
ments for the Degree of Doctor of Philosophy.

ABSTRACT

We investigatecertain fundamental problems i-. decentralized decision making and
computation. We study the problem of whether a set of decision makers (or
processors) with different (but related) information may make compatible decisions
without communication and we characterize the computational complexity of this
problem. We also analyze the complexity of other basic problems of decentralized
decision making, such as decentralized detection (hypothesis testing).

We then consider a scheme whereby a set of decision makers (processors) exchange
and update tentative decisions which minimize a common cost function, given the
information they possess; we show that they are guaranteed to converge to
consensus.

Finally, we consider a broad class of asynchronous distributed (deterministic and
stochastic) iterative optimization algorithms tolerating communication delays.
We associate communication requirements with such algorithms and show that they
converge appropriately under certain conditions which are no more severe than
those required for their centralized counterparts.

Several applications in human organizations, parallel computation and distributed
signal processing are indicated. , -4 - d.c: , ;. o. - -
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CHAPTER 1: INTRODUCTION

1.1 PROBLEM DEFINITION --

The subject of this report is the investigation of certain central problem

in decentralized (distributed)* decision making and computation.

Classical (centralized) decision making theory deals with the situation in

which a single decision maker (DM) (man or machine) possesses all available knowledge '..

and information related to a certain system and has to make a decision (or a

sequence of decisions) so as to achieve a certain objective (minimize a cost criterion,

for example).

Many real world systems (power systems, public or business organizations,

large manufacturing systems, etc.), however, are too large for the classical model

of decision making to be applicable. There may be a multitude of decision makers (or

processors), none of which possesses all relevant knowledge. In addition, there may

be limitations on the amount of communications allowed between distinct decision

makers, so that it is impractical to exchange all available information and convert

the problem to a centralized one. In fact, even if there exists infinite capacity

for communications, still centralization may be inadvisable, because no decision maker

may have the capability of tackling the overall problem by himself. The above reasons

make decentralization necessary, whereby several decision makers make their own deci-

sions, based on partial information, possibly by solving a problem related to the

original one. This raises the need to structure the decentralized decision process

so that the outcome of the joint effort of the various decision makers achieves, in

some sense, the goal of the overall system (organization).

From the point of view of the theory of computation, "centralized" theory deals

*The two terms are assumed in this thesis to have the same meaning and will be used
interchangeably. The term "decentralized" seems preferable, in general, because
"distributed" is often associated to systems governed by partial differential
equations.

* --. **.*-*c-&-*-*****.-,
* ° °. °........ .. ..... , .* - .
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with the case in which a single serial processor is to execute a sequence of ins-

tructions, in order to evaluate a desired result (value). In decentralized

computation , the same goal is achieved by a set of processors operatinq in parallel

and exchanging partial results. Parallel computation is advantageous in many

situations, because the desired final result may be evaluated much faster, or because

the input data of the computation are physically distributed (for example, if the

computation consists of statistical processing of data acquired by physically distinct

sensors). Interesting problems arise in this context because good parallel algorithms

can be very different from simple adaptations of good serial algorithms.

* Concerning decision making problems, especially in human organizations, it is

often the case that distinct decision makers have different objectives, which are

also different from the objective of the organization. This may lead to conflict and

* to situations best addressed by game theory. We will restrict, however, to ,ituations

in which:

* •a) There is a well-defined organizational objective.

b) The individual decision makers are either physical processors (so that no

interest may be ascribed to them) or they may be treated - for the purpose of

analysis - as if they were processors with predictable behavior. For example,

a human decision maker may make decisions motivated by his perceived self-

interest; however, if an analyst knows the perceived self-interest of that

decision maker, he may be able to predict his behavior. From that point on,
0 S

self-interests become irrelevant: as fa- as analysis is concerned, the human

decision maker may be modelled as a processor, operating in a specific way.

0

*In this context, the terms "parallel" or "distributed" computation are often used.
S
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Given such a setting, this report aims at the better understanding of the

limitations and capabilities of. decentralized systems. Clearly, any issues per-

tinent to centralized decision problems may arise in decentralized problems as well.

Our goal is, however, to focus on issues which are unique to decentralized systems,

the predominant ones being the effects of communications, or of the impossibility

of communications. I
Our work does not center around any particular application. The selection of

the problems to be addressed is guided, however, by applications in:

a) Decentralized (parallel) computation.

b) Human Organizations.

c) Decentralized Signal Processing.

In some respects, there is little in common between so diverse applications.

On the other hand, they all involve decentralization. If an abstract study may find .

applications in more than one of the above areas, it is legitimate to claim that a

common denominator behind a variety of decentralized systemshas been addressed. This

is not an elusive goal: for example, Arrow and Hurwicz [1960] have indicated common

features of decentralized computation and the operation of economic markets.

We close this section with a remark on terminology. Depending on the context,

the "entities" in a decentralized system which perform computations or make decisions,

are often called processors, decision makers, modules or agents. Each of the above

terms often carries certain connotations, which we wish to avoid. In particular,

using the term "decision maker" often implies the existence of an individual interest,

on the basis of which decisions are being made. If, however, we have a human who 1

simply does exactly what he has been told to do (as if he were programmed), the term S

G ---1
• . . . • • •
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"agent" seems to be more appropriate. The latter term, however, sounds unnatural

in a situation involving only computing machines. For these reasons, we prefer to

use the neutral terms "processor" or "module", with the understanding that, in some

occasions, they may refer to humans who process information and apply decisions in a -
prescribed manner.

1.2 OUTLINE AND OVERVIEW

In this section we outline the contents of this report, with the main goal of

highlighting the unity and continuity of the chapters that follow.

Chapter 2 addresses certain conceptual issues related to decentralized systems.

Starting with a general definition of decentralized systems, we indicate some typical

features that may be present. We then discuss the nature of associated design pro-

blems, pointing to the possibility of having a decentralized system designing another

decentralized system.

We then continue with an abstract discussion and a schematic history of actual

organizations, which serves as a motivation for some of the problems to be studied

in the sequel, together with a brief discussion of the types of mathematical problems

raised by the possibility of communications, motivating again the work that follows.

Chapter 2 ends with a survey of some of the literature related to decentralized

systems.

Chapter 3 deals with the simplest but fundamental problems of decentralized.

decision making, exploring the effect of communication constraints.

The first problem we raise is the following: given a set of processors with "

partial information, is it possible that they make satisfactory decisions (in a

• S- ' i • '' " "] '' . - . . .' . - , . . [ ' - , - -. " ,. ,- -



certain sense), without communicating? The next problem, which follows logically

from the preceding one, is: if it turns out that they have to communicate, what

is the least amount of communications required? We pose these problems in a simple

setting in which the sets of possible observations and decisions are finite. We

show, however, that these are hard combinatorial problems. We also investigate a

variety of special cases and versions of the basic problems, with the goal of deter-

mining the boundary between easy and hard problems. Special attention is paid to

the well-known problem of decentralized hypothesis testing (detection).

The results of Chapter 3 lead to the conclusion that the optimal design of a

* decentralized system, even in the absence of any dynamics, is very hard computationally.

The problem "who should communicate to whom, what, when, etc." cannot be addressed,

for all practical purposes, with the goal of optimizing within a most general class

of communication protocols. Rather, we have to restrict to smaller, more tractable,*

classes of communication protocols. To which particular class of protocols one

chooses to restrict, unescapably contains a certain degree of arbitrariness. I
With this point of view, we consider, in Chapter 4, a particular protocol

concerning a set of processors with identical prior information (Bayesian models),

different posterior (on-line) observations and identical cost functions. These proces-
sors are assumed to exchange (asynchronously) tentative decisions(that is, decisions

which are optimal given the information they possess). We show that the decisions

of the processors will asymptotically converge to consensus even if they have lim-

ited memory and forget some of their past information, in the course of the process

of exchanging tentative decisions. We show that this scheme leads to a decomposition

algorithm for static linear estimation problems. We also discuss briefly what could

happen if the decision makers had different cost functions and/or models (prior

probabilities).

9
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The scheme of Chapter 4 will be often hard to implement, because at each

stage each processor has to evaluate an optimal (tentative) decision, given its

information, which may be a hard non-linear problem. For this reason, we take in

Chapter 5 a more realistic approach, more applicable to human decision makers with

bounded rationality (cognitive limitations) or computing machines with limited

capabilities: each processor makes tentative decisions which are communicated to ... -

other processors; concurrently with the process of exchanging messages, each proces-

sor updates its tentative decision. In contrast with Chapter 4, however, these

updates are not optimal in a Bayesian sense; rather, they are small updates in a

direction which is expected to improve performance.

The scheme of Chapter 5, may be viewed from several different perspectives: as

a decentralized algorithm for solving an optimization problem, in which case ten-

tative decisions are local states of computation; alternatively, as a process of

adjustment of human decision makers in a divisionalized organization. Of course, the

different perspectives concern the interpretation of the results, not the mathematical

analysis.

We now outline the contents of Chapter 5, in more technical terms. We first

develop a suitable model of decentralized computation and then proceed to prove

convergence results for a broad class of asynchronous decentralized (deterministic

and stochastic) optimization algorithms, tolerating communication delays. These

include constant step-size algorithms (e.g. gradient-type deterministic optimization

algorithms), as well as decreasing step-size algorithms (e.g. stochastic approximation *

algorithms).

The conditions for convergence typically contain requirements on the frequency

of communications between processors. These conditions may be interpreted as

S . - '
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guidelines for designing the communication flows in a decentralized system (be it

a human organization or a parallel computer) in a way that guarantees smooth

operation of the system. We also apply our results in algorithms for decentralized

identification of dynamical systems.

The last chapter contains an overview of our study, some conclusions and sug-

gests future research directions.

1.3 CONTRIBUTIONS OF THIS REPORT

In this Section we list the contributions of Chapters 3,4 and 5 which contain

our technical results.

Chapter 3

0 We show that the discrete versions of the basic (static) problems of decentralized

decision making (including the well-known team-decision problem [Marschak and Radner,

1972]) are algorithmically hard (NP-complete, or worse), even though the corresponding

centralized problem is trivial. We also obtain complexity results for several special

cases.

* We show that the problem of decentralized hypothesis testing [Tenney and Sandell,

1981] is algorithmically hard, if a certain simplifying assumption of Tenney and

Sandell is removed.

0 We show that the problem of designing an optimal communications protocol is

algorithmically hard, even in the simplest setting.

SJ
* S
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Chapter 4:

We show that a set of processors (with identical models and cost function, but

different on-line information) who exchange optimal (given their information)

decisions will asymptotically converge to consensus, under certain assumptions. -i

This is true even if the processors have limited memory, so that they may forget

some of the information they had acquired during the operation of this scheme.

These results generalize significantly earlier results of Aumann [1976],

Geanakopoulos and Polemarchakis [1978], Borkar and Varaiya [19821.

o We obtain a new decomposition algorithm for solving linear estimation problems

0 and prove that it converges exponentially.

Chapter 5:

0 We develop a model for asynchronous decentralized computation which generalizes an

earlier model of Bertsekas [1982,1983]. This model allows different processors

either to specialize in updating a component assigned to them; or, they may "overlap"

so that many of them update the same component of a decision vector. A novel feature

of this model is that it allows us to associate with the decentralized algorithm an

aggregate state of computation.

0 We prove convergence (to the centralized optimal) of asynchronous decentralized

versions of a broad class of deterministic and stochastic optimization algorithms

(with either constant or decreasing step-size) under conditions which are not sig-

* nificantly stronger than those required for the centralized counterparts of our

results [Poljak and Tsypkin, 1973].

* |

--S



0 We prove convergence results for decentralized stochastic algorithms driven by

correlated noise, analyzed via the ODE approach CLung, 1977a].

0 We study gradient-type deterministic optimization algorithms for an additive costI

function in which a different processor is assigned to a different term of the cost

* function. we show that convergence is guaranteed if the frequency of communications

between two processors is proportional to the degree of coupling between theirI

subproblems.

* 0 we apply our results and prove convergence of certain decentralized algorithms for

identification of dynamical systems. 2

Leaving technical details aside, a main cotiuinof Chapter 5 is that a novel

* way hsbeen found to associate communication reurmnswith tesmooth operation

of a class of decentralized systems.

* ~- ]
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CHAPTER 2: A DISCUSSION OF DECENTRALIZED SYSTEMS

In this Chapter we discuss certain general issues concerning decentralized -

systems. Our discussion has to be limited, however, due to the fact that there

is a great variety of real world decentralized systems. For example, a decentral- .

ized controller for a large power system, a large company or a special purpose

multiprocessor, have enough differences so as to render a unified analysis impossible. :p-,

On the other hand, very different systems may have substantial similarities, so that -

an abstract viewpoint may be useful. (See [Arrow and Hurwicz, 1960], for example.)

In Section 2.1 we start with a definition of a decentralized system (in order

to fix the terminology) and discuss some qualitative features that may be present.

We comment on the nature of the problem of designing a decentralized system and

suggest that the design may be carried out by another decentralized system which is

distinct from the first.... !-

Section 2.2 takes a brief and schematic look at existing organizations, so as to

identify some types of problems that may be addressed.

Section 2.3 focuses on the role of communications, since these are the cause

of the main differences between centralized and decentralized systems. This Section, . i
together with the preceding one, serves as an abstract motivation for the Chapters

that follow.

Section 2.4 surveys some of the literature related to decentralized systems.

2.1 DECENTRALIZED SYSTEMS AND THEIR DESIGN
6]

What is a Decentralized System.

We provide below a fairly general definition of what constitutes a (discrete-

time) decentralized system. This definition is intended primarily to provide a

6'S

0I
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language for the discussion that follows. For this reason, we avoid the discussion

of continuous-time decentralized systems which may lead to non-trivial well-posedness

questions, which need not concern us here.

From an abstract mathematical perspective, a decentralized system is simply

an interconnected system in which we give certain particular interpretations to the
-.A

interconnection variables involved. Formally, we have (see Figure 2.1.1):

1. An environment module M 0 and a set V = {i .. M I of control modules.

2. A directed graph G=(V,E) whose nodes are the control modules. The arcs in

this graph indicate the allowed directions of communications.

3. For any (i,j)e E, let M.. be a channel module, through which messages from1)

M. to M. are being transmitted.

4. Let xi (t), xi_ (t) denote the state of module Mi , M.., respectively, at

time t, (t belongs to a discrete index set T) assumed to lie in some set

(state space) Xi , Xi., respectively.

5. Let ui (t) denote the control (decision) applied by module Mir i#O, on the

environment, at time t, assumed to lie in some set U..

6. Let y (t) denote the observation (measurement) on the environment, obtained at

time t by module Mir i-0, assumed to lie in some set Yi.

7. Let wi , wij be disturbances which affect the operation of modules Mi' Mij"

respectively, belonging to sets . W ij, respectively. Here w captures the

uncertainty in the environment; w1, i10, captures the uncertainty in the inner

operation of control module Ni ; wij captures the uncertainty in the communication

process (message distortions and delays). (Following the conventions of

6_

6
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I I  0

probability theory, the disturbances are not indexed by time; so the sets

Wi , Wi, are most likely to be sets of sample paths. Of course, no pro-

babilistic assumptions are made at this point.)

8. Let r.., a. .(i,j)eE, denote the messages sent from M. to M. at time t, and

received by M from i., at time t, respectively. These are assumed to

belong to sets M...

9. Finally, we have certain relations between the above introduced variables

which specify the evolution of the internal states of each module as well as

the interactions between modules:

II

xo(t+l) = o(t,xo(t),Ult),(tw o ) 2.1.1)

x1 ( t + l )  i(t'x (tl'u i ( t l , y i ( t l m l i ( t ),...,mN. ( t) , w.), , (212

x..(t+l) = t (t),mi (t),wi]), i,j'O, (2.1.3)

1. 10 1 1

y. (t) = i(t,x (t),u(t),w , i (2.1.5)
1 01 0 1 0

m. ( Ct) = ( t i, 1j#O (2.1.6)

r r SM. (t) = (tx (t) ,m .(t),w i,j0, (2.1.7)

Equations (2.1.1)-(2.1.7) implicitly assume the following sequence of events

at time t:
IQ

1i1 Controls are applied.

(ii) Observations are obtained.

(iii) Messages are transmitted.

Iz

":"'-" " "'"* 22".-..*.": .'" " "-i'. -.",2 . . L .-- i -. . - - . : . i . •.,: i -i.:" * .- .. .. . '. . . *.. . . . . .. . : . - .
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(iv) Messages are received.

(v) Next states are formed.

(Of course, the above assumed sequence of events is a matter of convention.)

General Features of Decentralized Systems

We now discuss briefly some features which may (but need not) be present in

a decentralized system.

1. The environment may be modelled as an interconnected system, or it may be

completely absent. If it is an interconnected system, its topology mAy coincide

or may be different than the topology of the interconnections of the control modules.

The case of coinciding topologies creates some additional structure, which may be

mathematically exploited, and has been emphasized in the literature; however, such

a coincidence is not a logical necessity.

2.- The controls applied by the control modules may influence the evolution of the

state of the environment. They may also influence the observations directly, via

equation (2.1.5). This allows us to capture actions of a special type which initiate

a measurement process, without affecting the environment. In other words, the action

of a control module may determine whether a measurement will be obtained or not, and

of what quality.

3. Disturbances w. on control modules may reflect processor failures, rounding-off

errors or bounded rationality, when the modules represent humans.

4. If at time t no observation is made by Mi, we may let y (t) be equal to a special

0 symbol indicating this absence. So, it is not required that an observation be made

at each time instance. The same convention may be applied concerning message trans-

missions and receptions.

S .° , °. •."
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5. Observations obtained or messages received by module M. may be remembered or:1

forgotten. (Such effects can be captured by (2.1.2).)

6. The channel modules M.. are often fairly simple. For example, a time delay1]

together with some uncertain distortion (channel noise).

7. Equations (2.1.4)-(2.1.7) have been written so that - if there are no com-

munication delays and no channel noise - any observation obtained by module M. may

become immediately available to any other module M.. In that case, all modules

may make the next decision on the basis of common information.

r s8. A message i (t) may influence x. (t+l) which in turn may influence m. . (t+l).

This allows us to model a situation in which a message contains a request for

certain pieces of information.

9. A control module may have certain special state variables which remain cons-

tant (equal to their initial values) but nevertheless influence the evolution of

the remaining state variables. Such special variables may be viewed as parametriza-

tions, "set-points" of a controller or, for modules representing humans, they may

capture the capabilities, beliefs or prior knowledge of human decision makers.

10. The local disturbances w. to control module M. may influence the time at which

certain messages are transmitted or certain actions are undertaken. This allow us

to model systems which operate without any strict synchronization.

11. The evolution functions 4. of either the environment or the control modules may

be dynamic (next state depends on current one) or not.

. ,. ..
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Classification of Decentralized Systems

We saw above that a variety of qualitative phenomena may arise in a decentral-

ized system. If all of them are concurrently present, no meaningful analysis seems

possible. For this reason, it may be useful to classify decentralized systems in

a qualitative way. A general classification is possible along the following lines,

starting from a higher and proceeding to a lower level:

(i) According to the topology of the modules. -

(ii) According to the presence or absence of certain variables.

(iii) According to which variables explicitly influence other variables.

(iv) According to the nature of these influences.

The Performance of a System

We assume that a system exists in order to accomplish some task, perform some S

function or control the environment in a specific way; that is, there exists a

well-defined organizational objective. Otherwise, no design-oriented analysis

would be meaningful. This does not exclude the possibility that certain control

modules have their own interests, or that they have incorrect models of the other I
modules. Nevertheless, no matter what each module "believes" to be true, the

system's analyst has to postulate the existence of a true, objective model which -

describes the evolution of the system. Moreover, this evolution is to be compared - -

to a "desired" one, to see whether certain performance criteria are met. What may

be desirable from the analyst's perspective may be quite distinct from what is -

desirable by the modules.
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There is an abundance of qualitatively different ways of measuring the

performance of a system. For example:

1. The performance criterion may depend on the temporal evolution of the state

variables of the environment and/or control modules. In particular, it may depend --

on the entire history of the state variables (e.g. control theory with additive

costs), it may be asymptotic (e.g. the stability requirement in adaptive control)

or it may depend only on a final state (e.g. the performance of a parallel algorithm

may be judged in terms of the termination time).

2. A cost may be incorporated which is related to the size of the state spaces

of the control modules (so as to reflect the cost of memory) or to the complexity

of the evolution equations of the control modules (to reflect computation costs

during implementation).

3. There may be costs depending on the values of the controls being applied (e.g.

a penalty on energy being used), or costs of obtaining measurements.

4. Finally, there may be costs associated to the process of communications. For

example, each message transmitted could result to a penalty, possibly depending on

the identities of the transmitter and the receiver, as well as on the length of the

message. I
Note that the above mentioned aspects 1,2,3 of the cost criterion are also

relevant to systems with a single control module. So, it is the fourth aspect which

should be expected to lead to qualitatively new issues.

4
* - S
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Typically, not all of the design issues are included in the performance

criterion. Rather, a design is performed in terms of a narrow criterion and, then,

the designer has to check whether certain side-concerns are adequately handled.

Some conmmon side-issues are related to robustness, sensitivity and adaptivity to
-. 1

small and/or structural unmodelled variations.

On Design ProblemsA

We start with the premise that we are not just interested in analyzing the

performance of a given, fixed decentralized system; rather, we want to design one.

We must therefore distinguish those elements of the system which are given from

those which are amenable to design.

Formally, a system S may be viewed as an ordered pair , where c,

represent the fixed and variable elements of the system, respectively. We .assume

that, for any a, we are given a set B(CX) of admissible choices of the manipulable

parts of the system. It is often helpful to think about many systems simultaneously,

which motivates the next definition:

Definition 2.1.1: A decentralized scheme is a collection {(a,S(cl)):aeA} of

decentralized systems, where 8 is some function O:A - B(a).

Essentially, 8 yields an admissible design for any value of the fixed elements .

of the system. For example, if A is the set of linear systems, let the map 8 assign

a stabilizing compensator to each aeA, according to a well-defined rule.

Note that, typically, the separation of a system into a and 8-parameters follows

a certain pattern:

'(i) The environment dynamics, the effects of the controls, the environment distur-

bances and the properties of the channels are usually fixed.

* 0
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(ii) The controller dynamics and the mechanisms generating messages and controls

are usually free to be designed.

Let us now discuss design problems. Suppose that we are given a set A of

parameters; for each CeA, a set B(Ct)C B of admissible designs; a performance

criterion J:A x B R. The following questions may be raised:

i) Given a, 8, what is the value of J(a,8)?

(ii) For a=a , find 8*eB(a ) which minimizes J(a ,S), over all 8eB(a).
0 0 0 0

(iii) Find 8*: A)B such that for any fixed ceA,8*Ca) solves problem (ii).

SI
Let us now focus on questions (ii) and (iii). They are different in the same way

2
that the following two problems are different: (a) Minimize (8-2) ; (b) Minimize

2
(8-a) 2 . Question (ii) corresponds to a case study: designing a specific system;

question (iii) corresponds to designing a scheme. Although applications alwa-,

concern specific systems, theoretical analysis, in order to be general and useful,

must focus on questions of type (iii). We are thus led into the next issue: what
0

constitutes an answer to question (iii)? A closed form representation or a listing

of the values of 8* in a table is usually impossible. The only alternative left is

for the answer to consist of a list of instructions that may be followed to construct
6

8*(a) from a; that is, an algorithm which evaluates 8*. The instructions of any

such algorithm will consist of some elementary instructions (or operations) which

are assumed to be readily implementable, say in the form of a subroutine call.

(What we call elementary instructions here may be at a very high level when compared

to the elementary instructions considered in the theory of computation.) For example,

* 0
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the dynamic programming algorithm uses the instruction u: = arg min g(u) and
uI

the gradient algorithm for unconstrained optimization uses the instruction

A: =(ag/au)(u). (So, the instruction assumed to be available for the solution

of one problem may be the problem itself in another setting). Accordingly, what

constitutes an answer to question (iii) depends strongly on the set of elementary

instructions.

We argued above that a decentralized system (or scheme) is to be designed by an alg--

rithm, possibly a distributed one. Notice that such algorithms are special cases of

(decentralized) systems, under our definition. We obtain, therefore, a hierarchy:

(i) A system being implemented. (Lower level.)

(ii) A system which yields as final output the system to be implemented.
(Higher Level.)

1. The two systems, at the different levels, are distinct and should not be

confused, even though they are both related to the same situation.

2. Each of the systems in (i) and (ii) above may be either centralized or

decentralized, thus leading to four different combinations.

3. It makes a large difference whether the lower level is centralized and

the higher decentralized, or the converse is true. (In the context of linear control,

the first case has been called "decomposition" and the second "decentralization"

by Sandell [1976].)

4. If the systensat both levels are decentralized, the two topologies may

coincide, although this is not necessary. (In most of the literature on hierarchical

control .hahmoud, 1977], the two topologies are assumed to be identical. This may

* Si
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lead to some conceptual confusion, as it may be unclear which of the two decentral-

ized systesis being referred to. Findeisen [1982] clarifies this distinction by

talking about the "programing" and "execution" phases.)

5. The lower and higher level systems are interrelated: a) If we change the

design problem for the lower level system, a different high level system (more

complex or less complex) could be used. Typically, one is willing to sacrifice some

performance for the lower level system, if this results to a less complex design

algorithm (higher level system). However, such tradeoffs are often extremely hard

to quantify. b) Once the higher level system has terminated its operation, its out-

put must be transmitted to certain locations (the control modules of the lower level

system). These transmissions may entail a certain cost which is not pertinent to

the higher or lower level system, but rather to the fact. that the second must start

from where the first has stopped. c) It is also conceivable that the two systems

referred to above, operate concurrently. For example, an organization may change its

structure while operating.

2.2 ON REAL WORLD ORGANIZATIONS

There are many types of organizations but all of them are decentralized systems

in our terminology. We choose to restrict to those organizations in which there are - -

certain people who have a direct interest in the performance of the organization and

also have substantial authority for making changes. In our terminology, they are

faced with the problem of designing a decentralized system. This problem being often

intractable, very few organizations have been structured according to a grand-design

I%

I|
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which started from scratch. Rather, the design process was itself a decentralized

system, possibly operating concurrently with the organization itself. Such a

design is often incremental in two ways:

(i) Changes in the mode of operation of each module are incremental.

(ii) Modules are added to the organization incrementally. (An organization

typically grows from smaller to larger).

Due to this incrementalism, the current shape of an organization can only be

understood in terms of its past history. (Organizational design problems may have

many local optima; the final design will therefore depend on the starting point and

the steps that were followed). The following abstract history of evolution may be

hypothesized [Galbraith, 1977]:

1. In the beginning, we have a small organization in which each module

operates in a fixed manner, which may be assumed to be close to optimal. Many

actions are undertaken without communicating but whenever a module needs some in-

formation from other modules, it may obtain it by communicating.

2. As the organization grows, it ceases being optimal and some modules start

changing their mode of operation so as to improve performance. As their operation

changes, they need -and do - inform those modules who should be concerned about such

changes.K. 3. For an even larger organization, it becomes hard for each module to know

who is concerned about what. So, higher levels are introducedI who do not know

details about the lower level modules, but have a global picture and know who should

be concerned about what. They act as coordinators by setting up the necessary

• .i .. . . ..". .i-
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information flows. Also, in case that the interestsof the lower level modules

divert themselves from the interests of the organization, the higher level designs

a reward scheme so as to bring these interests as much in line as possible.

The above procedure does not need to lead to an optimal design. However, the

global problem being very hard, the above incremental procedure has to be accepted.

What remains to be done, from a normative perspective, is to ensure that each step ..'.

of the above procedure is carried out in a rational way, as best as possible. The

above outline may, therefore, serve as a general guide on what kinds of problems

should be addressed.

2.3 ON COMMUNICATIONS AND ASSOCIATED PROBLEMS

Many of the aspects of decentralized systems are also present in centralized

ones; therefore, they are not the prime subject of a theory of decentralized systems.

The main aspect which is unique to decentralized systems is the distribution of

information and communications and these should be the focus of theoretical

investigations.

Communications are unimportant if they are instantaneous, unconstrained, not

penalized and not corrupted by noise: in such a case, an optimal centralized design

6 coincides with an optimal decentralized design. Communications become important only

if one of the above assumptions is violated. Formally, communications add just

another component to the cost function and some new constraints. Difficulties arise,

however, because typically these new costs and constraints are qualitatively different

from the costs and constraints associated to the operation of the rest of the system.

This may make decentralized versions of otherwise easy problems particularly hard

(
(see Chapter 3).

4
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For these reasons we need some understanding of basic decentralized problems

in which communications enter in a simple way. Such simple problems may yield some

insight for more complex ones, or may be used as building blocks. From the mathe-

matical point of view, it is important to discover new ways of incorporating co-

munications costs and codstraints into decentralized versions of centralized problems,

in a sufficiently simple fashion so that analysis does not become impossible. Then,

we may proceed to address fundamental questions such as: "who should communicate what,

to whom and when, so as to guarantee that a decentralized system performs as desired?"

2.4 LITERATURE SURVEY

There are many disciplines relevant to the analysis or design of decentralized

systems: for example, decision theory, game theory, control theory, mathematical

programming, organization theory and computer science. The associated bibliography

runs in the thousands and a comprehensive survey is impossible. In this Section, we

discuss some representative lines of research, focusing on those areas which bear

some relation to our work. More specific references may be also found in the main

body of Chapters 3,4 and 5.

Bayesian Team Decision Theory and Decentralized Control

Team decision theory, in its original - static - version [Radner, 1962; Marschak

and Radner, 1972] deals with the following problem: a set of processors obtain

measurements of a stochastic environment; then, each processor makes a decision,

according to a decision rule, based on its own set of measurements only, i.e. without

communicating. Then a cost is incurred, depending on the decisions of each processor .-

* S
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and the state of the environment. The problem consists of designing the decision f
rule of each processor, so as to minimize the expected cost. A solution may be

easily obtained for certain special cases in which we may restrict to a set of

decision rules admitting simple parametrizations: for example, linear quadratic

gaussian (LQG) problems [Marschak and Radner, 1972] or linear gaussian problems with

an exponential cost criterion [Krainak, Speyer and Marcus, 1982a, 1982b; Speyer,

Marcus and Krainak, 1980]. In both of the above cases, optimal dec'sion rules turn

out to be affine functions of the measurements of each processor. Very little,

however, can be said for the general version of the static team problem. (See Sec- I
* tion 3.4 for some results on the complexity of this problem.) An interesting result

"- has been obtained by Arrow and Radner [1979] who have shown that the law of large

. numbers may be exploited to yield a simple approximate solution for a class of team

problems involving a very large number of processors. Also, Witsenhausen [1981] has S

derived a lower bound for a class of team problems.

" The static problem considered thus far admits a multi-stage (or continuous time)

extension [Ho and Chu, 1972; Singh, 1981]: the dynamic team or optimal decentralized

• ° control problem. Most studies have focused on the LQG case [Ho and Chu, 1972; Chu,

1972; Ho and Chang, 1980; Ho, 1980], since the general case is much harder, even

for static problems. The main results are in a sense negative: a solution may be

easily found only in the presence of "partially nested information structures", that ]
is when a condition of the following type is satisfied: If the decision of processor

A at time t influences the measurements of processor B at time T (T>t), then the - - S

information of B at time T contains the information of processor A, at time t. In

the absence of such a condition, WtaenhauasA 11968] hap constructed a simple two-stage I
I
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example showing that optimal decision rules may be nonlinear functions of the ""_

information. Even if linearity of decision rules is imposed as a constraint, the

optimal decision rules may correspond to infinite-dimensional compensators [Barta,

1978]. Certain special information structures are easier to study. For example,

the control-sharing information pattern [Sandell and Athans, 1974] and the one-step

delay information pattern [Sandell and Athans, 1974; Kurtaran and Sivan, 1974;

Bagchi and Basar, 1980; Varaiya and Walrand, 1978; Krainak et.al., 1982c] for which

simple solutions can be found.

The difficulties in the dynamic team problem may be understood in different

ways. We first have the "second quessing" effect: each processor makes decisions

by guessing the decisions of other processors, hence guess their guesses and so on,

ad infinitum, so that infinite dimensional compensators are obtained for finite
*1

dimensional systems. Second, there is the possibility of using the system being

controlled as a channel for communicating information, by judicious choice of the

control variables (signalling) LSandell and Athans, 1974; Ho, Kastner and Wong, 1978].

From a more mathematical viewpoint, the root of the difficulty lies in the fact that

the distribution of information and the prohibition of communications corresponds to

a special type of constraint on admissible decision rules, which is hard to handle V
o 0

A way out of these difficulties has been taken by restricting the admissible

compensators (decision rules) to have a fixed structure [Chong and Athans, 1971; Looze
0

et.al., 1978]. For the infinite horizon problem, we obtain a nonlinear parametric

optimization problem which can be solved numerically (Looze et.al., 1978; Geromel and

Bernussou, 1979]; however, it is a non-convex problem that may possess many local minima.

*e
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A higher level problem, which has been little studied, consists of designing

the information structure, subject to certain constraints [Chu, 1978; Ho and

Papadopoulos, 1979; Papavassilopoulos, 1983].

Once the pursuit of optimality is abandoned, we may pose the problem of designing

a decentralized compensator which stabilizes a given system. Several, and fairly

complete results have been obtained for this problem [Wang and Davison,1973; Saeks,

1979; Anderson and Clements, 1981; Davison and Ozguner, 1983; Sezer and Siljak, 1981],

some of them surprising [Anderson and Moore, 1981]. Finally, if the model of the sys-

tem to be controlled is itself unknown, one may consider the possibility of decentral-

ized adaptive control, on which some preliminary results have been reported [Ioannou

and Kokotovic, 1983].

More references in this general area can be found in the survey papers of

Sandell et.al. [1978] and Siljak [1983].

Decentralized Estimation and Hypthesis Testing

Suppose that a set of sensors obtains measurements (as in the team problem) and

each one of them tries to estimate some random vector or perform a hypothesis test.

Suppose also that the cost criterion couples the estimates (or decisions) of different

sensors by penalizing, for example, positive correlation of their errors. The problem

of designing the estimators (decision rules) of each sensor is then a special case of

the team problem; the main difference is that, now, the estimates (decisions) of one

sensor do not affect the measurements of other sensors, thus avoiding the possibility

of signalling. Barta [1978i has shown that the best estimates for linear Gaussian

dynamical systems can be obtained by finite-dimensional filters (resembling to the

Kalman filter), although of a much larger dimension.
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A two-sensor decentralized hypothesis testing problem has been studied by

Tenney and Sandell [19813 under the assumption that the measurements of the two

sensors are statistically independent (conditioned on either hypothesis). It was

shown that, similarly to the centralized case, likelihood ratios provide sufficient

statistics; the optimal thresholds for the two sensors are coupled through nonlinear

algebraic equations. Most interestingly, it was shown that asyamtric thresholds

may be optimal for perfectly symmetric problems, reflecting hedging behavior.

Qualitatively similar results have been also obtained for the decentralized quickest

detection problem [Teneketzis, 1982], the decentralized sequential hypothesis testing

(Wald) problem [Teneketzis, 1983], as well as problems involving communication of

zero-one messages from certain sensors to others [Ekchian and Tenney, 1982]. However, . -

almost all available results depend heavily on the conditional independence assumption.

Section 3.3 shows that if this assumption is removed, the problem becomes very hard.

The above described research allows either no communications at all, or the com-

munication of a few zero-one messages. Consequently, the final estimates are, in

general, worse than the estimates that would be obtained if the processors were to

exchange their detailed information. At the other extreme, we have schemes in which

sufficient communications are allowed, so that optimal centralized estimates are

obtained. Several architectures for decentralized Kalman filtering (or smoothing)
7 1

have been suggested [Speyer, 1979; Hassan et.al., 1978; Chang, 1980; Chong, 1979; "

Willsky et.al., 1982; Levy et.al., 1983]. These results typically boil down to the

following: the centralized optimal Kalman filter estimate is a linear function of the

measurements of the different sensors and the proposed schemes are different ways

of applying the superposition principle.

7 1
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Finally, we have some intermediate schemes in which real numbers are being

communicated, but without necessarily attaining the centralized optimal performance.

The scheme of Borkar and Varaiya (1982] is an example. (These results are signi-

ficantly extended in Chapter 4.) In the scheme of Sanders et.al. [1974, 1978] each

sensor produces estimates of only some of the components of an unknown state vector,

corresponding to a particular subsystem. Each sensor takes interactions from other ]
subsystems into account using either noisy observations of these interactions, or

messages - possibly corrupted by noise - from other sensors. The loss of optimality

is compensated by the fact that simpler filters, requiring fewer computations may

be used.

Decentralized (Parallel) Computation

In decentralized computation, several processors do a sequence of computations

(in parallel) and exchange partial results until they obtain a desired final result.

The main advantage is that parallelism may reduce the time required for obtaining

the final result (even though the total number of operations involved may be larger).

Arrow and Hurwicz [1960] have shown that decentralized computation is closely

related to decentralized decision making. Their inspiration came from the observation

that market mechanisms (which can be viewed as decentralized systems) do, under

certain assumptions, minimize a social cost function. Moreover, they have indicated

the importance of the compatibility of the distribution of computation with the

distribution of information. The analogy between optimization algorithms and models

of rational decision making has been carried further, especially in the context of

*J
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resource allocation in divisionalized organizations. [Moore, 1979; Burton and

Obel, 1980]. Section 5.7 of this report also proceeds along these lines.

There has been a significant volume of research on decentralized algorithms

for several classicalproblems, in which each processor only needs to know a subset

of the input data. Such algorithms may be broadly classified into synchronous and

asynchronous ones.

Synchronous algorithms may be viewed as alternative implementations of central-

ized (serial) algorithms. In general, however, it is not true that a decentralized

implementation of a good serial algorithm is also a good decentralized algorithm.

This leads to new and interesting theoretical questions concerning mainly the trade-

offs between the number of processors used, the total computation time required and

the number of messages that have to be exchanged. Some representative decentralized

synchronous algorithms have been developed for traditional numerical analysis problems

[Miranker, 1971], for optimal routing in data communication networks [Gallager, 1977],

as well as for many combinatorial problems [Borodin and Hopcroft, 1982; Gallager, 1983;

Ullman, 1984]. Trade-offs have been extensively studied by computer scientists,

because they have consequences on the practical feasibility of solving certain types

of problems by VLSI multiprocessors [Yao, 1981].

From a more theoretical perspective, the amount of communications required to

solve a discrete (combinatorial) problem by a decentralized algorithm is another %

complexity measure, similar to the "time" and "space" complexity measures for serial

computation. Certain general results have been obtained by Papadimitrou and Sipser

[1982]. (See also [Aho, Ullman, Yannakakis, 1983]). We will see, however, in Section

3.5 that it is very hard to determine the minimum number of communications required

for solving a given problem.

* S
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In many applications, asynchronous decentralized algorithms are desirable,

because of weaker requirements on the timing of computations and communications

[Kung, 1976]. Such algorithms raise theoretical questions as to how much asyn-

chronism may be tolerated, while maintaining correctness (convergence) of the algo-

rithm. Bertsekas [1982,1983] has obtained general results for the successive

approximations algorithm for dynamic programming and the computation of fixed points.

Earlier results may be found in [Baudet, 1978; Chazan and Miranker, 1969]. Chapter 5

contains several results on asynchronous decentralized optimization algorithms.

Hierarchical Decision Making and Control

Mesarovic, Mako and Takahara [1970] have suggested a general and formal approach

to hierarchical decision making. The environment is assumed to be an interconnected

system and a processor is assigned to each subsystem. Each such processor solves a

relatively small optimization problem derived from a global optimization problem; a

higher level processor (coordinator) affects, through some parameter, the structure

of the lower level problems. The main task of the coordinator is to find a value for

the parameter so that the decisions evaluated by the lower level processors are op-

timal for the global problem. The original theory was very abstract

[Varaiya, 1972] but it was followed by much research [Mahmoud, 1977] with particular

emphasis on infinite dimensional (e.g. optimal control) problems. It seems that this

theory is mostly applicable to the steady-state control of dynamic systems. For

stochastic and dynamic optimization problems, the hierarchical decision making schemes

that have been proposed are, in general, not optimal because they either incorporate

some sort of open-loop feedback or because they restrict the set of admissible control

, S



-32-

laws in an ad-hoc fashion [Chong and Athans, 1976; Forestier and Varaiya, 1978].

This is not necessarily undesirable, because real-world decentralized systems are

not supposed to achieve the centralized optimum, but only to approximate it.

However, relatively little progress has been made in obtaining systematically ap-

proximately optimal decision rules which are easier to find than the truly optimal

ones.

Spatial and Time-Scale Separation

Many large scale systems consist of subsystems which are weakly coupled or

which evolve in different time scales. Such a structure may be exploited for design-

ing decentralized controllers based on the theory of singular or non-singular pertur-

bations.

A non-singularly perturbed system is one composed of weakly coupled subsystems

(spatial separation). An approximate description can be obtained by neglecting the

interactions, during the first stage of the analysis [Simon and Ando, 1961; Aoki,

1968]. Singular perturbations correspond to time scale separation, are related to a

relatively rich class of phenomena and need much more sophisticated mathematics to ]
be analyzed [Papanicolaou, Stroock and Varadhan, 1977]. Many results have been obtainec ]
with applications in filtering [Haddad, 1976] and control [Teneketzis and Sandell, S.

1977; Kokotovic, O'Malley and Sannuti, 1976] of linear systems, control of Markov

chains [Delebecque and Quadrat, 1981; Phillips and Kokotovic, 1981] and multimodelling

in large scale system [Khalil and Kokotovic, 1978].

* S



-33-

Game Theory and the Design of Incentives

Game theory aims at characterizing ration4l behavior in the presence of conflict

[Von Neumann and Margenstern, 1953; Luce and Raiffa, 1957; Vorobev, 1977; Roth, 1979].

A particular class of games is related to incentive system design. Here the higher

level of an organization chooses a reward scheme and the lower levels make decisions

trying to maximize their individual reward. The problem consists of choosing a

reward scheme so that the lower level decision makers end up minimizing an organiza-

tional cost function. In the language of Section 2.1, the incentive design problem

is essentially a problem of designing a decentralized system when the available control

4 modules are "selfish" individuals which aim at maximizing their individual rewards, S

rather than optimizing the performance of the organization. It should be emphasized

that the nature of results obtained for this problem depends heavily on the set of

admissible reward schemes; the larger this set, the easier it becomes to force the 0

low-level decision makers to behave in a desired way [Groves, 1973; Groves and Loeb,

1979; Jennergren, 1980; Ho, Luh and Muralidharan, 1981].

4 01
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CHAPTER 3: DISCRETE DECENTRALIZED DECISION PROBLEMS

3.1 INTRODUCTION AND MOTIVATION

In this Chapter we formulate and study certain simple decentralized problems.

Our goal is to formulate problems which reflect the inherent difficulties of decentral ->1

ization; that is, any difficulty in this class of problems is distinct from the dif- _

ficulty of corresponding centralized problems. This is accomplished by formulating

decentralized problems whose centralized counterparts are either trivial or vacuous.

One of our goals is to determine a boundary between "easy" and "hard" decentral-

ized problems. Our results will indicate that the set of "easy" problems is

* relatively small.

All problems to be studied are imbedded in a discrete framework; the criteria we

use for deciding whether a problem is difficult or not come from complexity theory -)

[Garey and Johnson, 1979; Papadimitriou and Steiglitz, 1982]: following the tradition
0

of complexity theory, problems that may be solved by a polynomial algorithm are consid-

ered easy; NP-complete, or worse, problems are considered hard.* However, an NP-complet--

eness result should not be thought as a result that closes a subject, but rather as a -

result which can redirect research efforts to heuristic and approximate algorithms or

possibly easier special cases. It should be also stressed here that NP-completeness of

a discrete problem can be an indication that the corresponding continuous problem does -l

not admit an analytical solution nor an efficient numerical solution [Papadimitriou and

Tsitsiklis, 1984].

The main issue of interest in decentralized systems may be loosely phrased as

"who should communicate to whom, what, how often," etc. From a purely logical point

of view, the first question that has to be raised is "are there any communications

*One way of viewing NP-complete problems, is to say that they are effectively equivalent.
to the Traveling Salesman problem, which is well-known to be algorithmically hard.
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necessary?" Any further questions deserve to be studied only if we come to the

conclusion that communications are indeed necessary.

The subject of Section 3.2 is to characterize the inherent difficulty of the

problem of deciding whether any communications are necessary, for a given situation.

We adopt the following approach: a decentralized system exists in order to accomplish

a certain goal which is externally specified and well-known. A set of processors

obtain (possibly conflicting) observations on the state of the environment. Each

processor has to make a decision, based on its own observation. However, for each

state of the environment, only certain decisions accomplish the desired goal. The

question "are there any communications necessary?" may be then reformulated as "can

the goal be accomplished, with certainty, without any communications?" We show that - -

this problem is, in general, *a hard one.

We then impose some more structure on the problem, by assuming that the obser-

vations of different processors are related in a particular way. The main issue that

we address is "how much structure is required so that the problem is an easy one?"

and we determine the boundary between easy and hard problems.

In Section 3.3 we study a particular (more structured) decentralized problem -

the problem of decentralized hypothesis testing - on which there has been some interest
Ii

recently, and characterize its difficulty.

In Section 3.4 we formulate a few problems which are related to the basic -

problem of Section 3.2 and discuss their complexity.

Suppose that it has been found that communications are necessary. The next

question of interest is "what is the least amount of communications needed?" This

" " .. -: . : " . . .. . .-.- . -.. . ... . .- . . . . . . .. . ..-- -
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problem (Section 3.5) is essentially the problem of designing an optimal communica-

tions protocol; it is again a hard one and we discuss some related issues.

In Section 3.6 we present our conclusions and discuss the conceptual significance

of our results. These conclusions may be summarized by saying that:

a) Even the simplest problems of decentralized decision making are hard.

b) Allowing some redundancy in communications, may greatly facilitate the (off-line)

problem of designing a decentralized system.

c) Practical communications protocols should not be expected to be optimal, as far

as minimization of the amount of communications is concerned.

The results of this Chapter appear in [Papadimitriou and Tsitsiklis, 1982;

Tsitsiklis and Athans, 1985].

S

3.2 A PROBLEM OF SILENT COORDINATION

In this Section we formulate and study the problem whether a set of processors

with different information may accomplish a given goal -with certainty- without any

communications.

Let {1,...,MI be a set of processors. Each processor, say processor i, obtains

an observation yi which comes from a finite set Y.i of possible observations. Then,

processor i makes a decision u. which belongs to a finite set U. of possible decisions,

according to a rule

u. =Yi(yi) (3.2.1)

where Yi is some function from Yi into U. The M-tuple- (yl,...,yM) is the total

information available; so it may be viewed as the "state of the environment."

% --. -- -....
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For each state of the environment, we assume that only certain M-tuples

(Ul, ... uM of decisions accomplish a given, externally specified, goal. More

precisely, for each (yl,...,yM)e Y x ... x Y, we are given a set S(yl,..., )C

U1 x...x UM of satisficing decisions. (So, S may-be viewed as a function from
U x...x U
1 MY x Y x...x Y into 2

1 2 .

The problem to be studied, which we call the "distributed satisficing problem"

(after the term introduced by H. Simon [19801) may be described formally as follows:

Distributed Satisficing (DS): Given finite sets YI .... YM$ U1 ..... UM and a function

SS: Y1 x... x YM 2 , x... are there functions yi: Y. *Ui, i=l,2,...,M, such that

(Yl(yl),.. ,YM(yM))e S(Yl, ...,yI), V(yl,.... We YIx...xY ? (3.2.2)

Remarks:

1. We are assuming that the function S is "easily computable"; for example, it may

be given in the form of a table...

2. The centralized counterpart of DS would be to allow the decision ui of each agent

depend on the entire set (yl,...,yM) of observations; so, Y. ..uld be a function
1

o from Y x...x Y into U.. (This corresponds to a situation in which all processors
1M 1,

. share all information). Clearly, then, there exist satisfactory (satisficing) func-

* tions Y.: Y x...x YM ) U, if and only if S(Y ,...,y ) 1, (I''....YM)eYI x...xYM.

Since S is an "easily computable" set as a function of its arguments, we can see that -

the centralized counterpart of DS is a trivial problem. So, any difficulty inherent

in DS is only caused by the fact that information is decentralized.

. . . . ..* . . ** , " .-. • - -. i . - "
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3. A "solution" for the problem DS cannot be a closed-form formula which gives an

answer 0 (no) or 1 (yes). Rather, it has to be an algorithm, a sequence of ins-

tructions, which starts with the data of the problem (Y ,...$,M U1,...,U. S) and

eventually provides the correct answer. Accordingly, the difficulty of the problem

DS may be characterized by determining the place held by DS in the complexity hierarchy.

For definitions related to computational complexity and the methods typically used,

the reader is referred to [Garey and Johnson, 1979; Papadimitriou and Steiglitz, 1982].

4. If, for some i, the set U. is a singleton, processor i has no choice, regarding
1

its decision and, consequently, the problem is equivalent to a problem in which

processor i is absent. Hence, without loss of generality, we only need to study

instances of DS in which IU1I> 2,Vi*.

5. We believe that the problem DS captures the essence of coordinated .decision making

with decentralized information and without communications (silent coordination).

Some initial results on DS are given by the following:

Theorem 3.2.1:

a) The problem DS with two processors (M=2) and restricted to instances for which the

cardinality of the decision sets is 2 (IU.i=2, i=1,2) may be solved in polynomial time.

0 b) The problem DS with two processors (M-2) is NP-complete, even if we restrict to

instances for which U 11=2, IU2 1=3.

c) The problem DS with three (or more) processors (M>3) is NP-complete, even if we

0 restrict to instances for which IUi 1= 2, Vi.

Proof: We will only prove here part (c); the first two parts are corollaries of

Theorem 3.2.2 which is a stronger result.

* For any finite set A, we let IAI denote its cardinality.
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Our starting point is the satisfiability problem for propositional calculus

with three literals per clause (3SAT) which is a known NP-complete problem [Garey

and Johnson, 1979]. We will reduce 3SAT to DS with three processors (M=3) and binary

decision sets. Given an instance of 3SAT, let V be the set of literals and C the set

of clauses. We construct an instance of DS as follows:

Let Y={l,2,...,IvI},Ui={0,l}, i=l,2,3. Let S(k,k,k)={(0,0,0),(l,l,l)},
1 1

k=l,..., Vi. Finally, we interpret each clause in C as stating that a certain triple

is not in the satisficing set. (For example, the clause (x. v Riv3 ) , where

l<i<j<k<IVI, translates to the statement that the triple of decisions (0,1,0) does

not belong to S(i,j,k). .

If there exists a satisfying assignment for the instance of 3SAT, let us define

decision rules y.i(j)=O, i=1,2,3, (respectively yi(j)=1, i=1,2,3) if the satisfying

assignment sets the j-th literal to zero (respectively 1). It then follows that there

exist satisficing decision rules.

Conversely, if there exist satisficing decision rules (y 1,Y ,Y , we must have

y1(j) = Y2(j) = Y3(j), vj; we assign this common value of Yi(j) to the j-th literal

in V, to obtain an assignment that satisfies the clauses in C. U

Theorem 3.2.1 states that the problem DS is, in general, a hard combinatorial 0

problem, except for the special case in which there are only two processors and each

one has to make a binary decision. It should be noted that the difficultyis not caused

by an attempt to optimize with respect to a cost function, because no cost function has

been introduced. In game theoretic language, we are faced with a "game of kind",

rather than a "game of degree".

* Throughout this Chapter an overbar stands for negation. Also, A stands for logical
"and" and V stands for logical "or".

0
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We will now consider some special cases (which reflect the structure of typical

practical problems) and examine their computational complexity, trying to determine

the dividing line between easy and hard problems. From now on we restrict our at-

tention to the case in which there are only two processors. Clearly, if a problem

with two processors is hard, the corresponding problem with three or more processors '

cannot be easier.

We have formulated above the problem DS so that all pairs (y ,y )e Y XY are
1 2 1 2

likely to occur. So, the information of different processors is completely unrelated;

their coupling is caused only by the structure of the satisficing sets S(y1 ,y2). In

most practical situations, however, information is not completely unstructured: when

processor 1 observes yl' it is often able to make certain inferences about the value of

the observation y 2 of the other'processor and exclude certain values. We now formalize

these ideas:

Definition: An Information Structure I is a subset of Y XY 2 . We say that an informa-

tion structure I has degree (DID2), (DID 2 are positive integers) if:

(i) For each yleYl there exist at most D distinct elements of Y such that
1 2

(Yl, Y2 )eI-

For each y2eY2  there exist at most D distinct elements of Y such that--O

(Y' y2)

(iii) DID 2 are the smallest integers satisfying (i), (ii).

We now interpret this definition: The information structure I is the set of pairs

(ylY2) of observations that may occur together. If I has degree (DI,D2 ) processor 1

may use its own observation to decide which elements of Y2 may have been observed by

* 5
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K• I .7 .

processor 2. In particular, it may exclude all elements except for (at

most) D1 of them. The situation faced by processor 2 is symmetrical.

If DI=1 and processor 1 observes yI' there is only one possible value for y2 "

So, processor 1 knows the observation of processor 2. (The converse is true when

D 2=1). We could call this a nested information structure because the information of one

processor contains the information of the other.

When DI=D =1, each processor knows the observation of the other; so, their
12=

information is essentially shared.

Since pairs (y ,y 2) not in I cannot occur, there is no meaning in requiring the

processors to make compatible decisions if (ylY 2) were to be observed. This leads to

the following version of the problem DS:

U 1xU21IX2
DSI: Given finite sets Y1 xY2' U1 2 1 C Y1XY2 and a function S:I-* 2 , are there

functions yi: Yi -) Ui, i=l,2, such that

(Y1 (y),Y2 (y2 ))eS(Yl,y 2 ) , V(yly 2 )e I? (3.2.3)

Note that any instance of DSI is equivalent to an instance of DS in which

S(yly 2 )=UlXU 2 , y(yly,2 )01. That is, no compatibility restrictions are placed on the

decisions of the two processors, for those (yly 2) that cannot occur.
*1 2

We now proceed to the main result of this Section:

Theorem 3.2.2:

a) The problem DSI restricted to instances satisfying any of the following:

(i) One or more of DUI1, 1U21, DID 2 is equal to 1,

(ii) 1-U11=1%21= 2,

. . . .
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(iii) D =D 2=2,

(iv) D, =u 11=2, (or D =U 11=2),

may be solved in polynomial time.

b) The problem DSI is NP-complete even if we restrict to instances for which

Iull= D=3, Iu= D =2

1 1 21 2

Proof: In order to study the complexity of the distributed satisficing problem, we

shall first point out the close connection between this problem and a family of res-

tricted versions of the satisfiability problem for propositional calculus, which we

call RSAT. A formula of RSAT has a set of variables F=F1UF 2U F 3 , where

F = {yi : i1,...,2; j=1,2,3},

F = {Z.: i=l,...,,m}, F = {x. :i=l,...,n},
2 3 1

and k,m,n, are non-negative integers.

The set C of clauses of an instance of RSAT are the following:

(i) One clause for each i between 1 and Z, stating that exactly one of the

variables y. 1 ,Y. 2 ,yi 3  is true,

(ii) An arbitrary number of clauses of the form (Yij vx q) or (y jv x q), and

(iii) An arbitrary numbers of clauses of the form (zivxj ), ( z.vx.),(ziv x.),

( z.v x.

*
For any fixed i, we will say that the variablus yilYi2,yi3 belong tc the same

group. Each variable in F or F will be thought as forming a separate group. A
2 3

" " ".. . . - . - . , °
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clause of type (ii) or (iii) is said to connect two (-o e literals of that

clause belong to these groups. Finally, we will say instance of RSAT has

degree (D ,D ) if each group of variables in F or F - ;onnected to at most D

other groups and each group of variables in F3 is connected to at most D2 otkir

groups.

Lemma 3.2.1:

a) RSAT restricted to instances of degree (DI ,D ) is equivalent to DSI restricted

to instances of degree (D1,D2), with 1U11=3, 1U2 1=2.

b) RSAT restricted to instances for which F1=0 is equivalent to DSI restricted to

instances for which lu- lU21=2.

Proof:- Let Yl={l,...,9+m}, Y 2={l,...,n}. Think of y as stating that, if processor

1 observes i (with l<i<Z) then it decides j; similarly, if processor I observes Z+i

(with l<i<m) it decides 1 (respectively 2) if z.=l (respectively 0,. Finally, if

processor 2 observes i (l<i<n), it decides 1 (respectively 2) if x.=l (respectively 0).

We may then interpret the clauses of RSAT of type (ii) and (iii) as stating that

certain pairs of decisions are not in the satisficing set. (For example, the statement

(3,2) 0 S(i,j), for some i,j, 1<i<L, lj.<fn, is equivalent to the clause (yiV xj).)
13 j __

Note that proces£ar 1 may choose between three decisions and processor 2 between

two decisions, so that 1U11=3, 1U21=2. (In fact, if processor 1 observes i, with

Z+l<i<+m, it may only decide 1 or 2. But this is the same as if it could also

decide 3 but the satisficing sets are such that

(3,k)OS(i,j), vke{1,2}, vie{£+l,...,£+m}, Vje{l,...,n}.)

- '.
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In the case where FI=', processor 1 has only two choices for each observation,

and this corresponds to DSI with 1U1 1=1U2 1=2.

Clearly, each "group" of variables corresponds to a possible observation. If

two groups are not connected by a clause, then no constraint is placed on the compat-

ibility of decisions for the corresponding pair of observations, and conversely.

But placing no compatibility constraint is equivalent to assuming that this pair of

observations may never occur together. This shows that the degree of an instance of

RSAT is the same as the degree of the information structure I for the corresponding

instance of DSI.

* Clearly, the above construction may proceed both ways which shows the equivalence

of the two problems. This concludes the proof of Lemma 3.2.1. M

a) (i) If UI=1 or U =1, the problem is trivial. If D =1, a satisficing decision

rule exists if and only if

7TI(S(YI'Y2)) Y' y I 'ii

{Y 2 : (y'y 2 )e}

where N (UlU )-. The above condition can be clearly tested in polynomial time.
112 1

a) (Li) By Lemma 3.2.1(b), DSI with 1UI1HU2 1=2 is equivalent to RSAT restricted to

instances for which F 1=; the latter is a special case of 2SAT (the satisfiability

problem of propositional calculus with two literals per clause) which may be solved

* in time which is a linear function of the number of variables and clauses. So, a
s

0(IY 1i'IY2I) solution is possible.

0

i - .. -' .t .. ....... .. ... ..... a. .t. .. &....t *- - - - - ., . . . . .-
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a) (iii) Let DI=D2 . Possibly by renaming, assume that Yl' Y are disjoint sets.
12 2

Consider the graph G=(Y1UY 2 1 ). (Here Y1U Y2 is the set of nodes, I the set of

undirected edges). Each node of this graph has degree at most 2. Therefore, the .

connected components of G are either isolated nodes, chains or cycles.* Each con-

nected component of G defines a subproblem and these subproblems are decoupled. So, I.

without loss of generality, we may assume that G consists of a single connected

component. We complete the proof under the assumption that G is cycle. (If G is a S

chain, the proof is similar but simpler; in fact we may introduce an additional edge

and make G is a cycle; this will not make the problem any easier, because a new edge

simply allows the presence of more constraints. If G is an isolated node the problem 0

is trivial).

Let us assume that G is a cycle. Then Y1 and Y2 must have the same number n

of elements. In particular, the elements of YI,Y 2 may be numbered so that (see Fig.

3.2.1). I={(i,i): il,...,n}U{(i,i-1): i=2,...,n}U{(l,n)}.

Let us define

S'(1,n-1) W ( 1 u e U xU2  3(u 'u')e U xU2  such that

(u ,)e S(n,n), (u ,u' )e S(n,n-1),.
n n n n-l

(Ul1 ,U)e s(,n)}

and note that S'(l,n-l) may be evaluated in o[1u112 u12] time. We now have:

* A graph with n nodes is a chain, if its nodes may be numbered so that

E.-{(i,i+l): i=l,...,n-l}; it is a cycle if its nodes may be numbered so that
E={(i,i+l): i=l,...,n-l}U{(n,l)}. (Here E stands for the set of edges.) -

is'
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vj

1 2 n- n

.1

Figure 3.2.1: An Information Structure with Dl=D =2.
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An instance of DSI is a "YES" instance +-g- -

3(u .. ,u ) F(u.,u')eS(i,i), i=l,...,n and
11 n l LII

(ui,u )eS(i,i-1), i=2,...,n and1.i-i

(ui ,U)eS(l,n)]+. .

3(u uu u ..eS(i, i), i=i,...,n-l and
1 i 'n-i' n-i 1i1

' u.,ui )eS(i,i-i), i=2,...,n-i and
'% =2,-i- an

(Ulu n )eS' (,n-i)]

This last expression corresponds to a new instance of DSI in which n has been replaced

by n-i. Proceeding in the same way, the problem will be solved after at most n similar

stages. This is essentially an algorithm of the dynamic programming type which solves

the problem in time 0(1Yl11Ul11U2 1).

Remark: In fact an 0(IYI IUJ 1U2 1(IUJ+1U2 1)) solution may be obtained, if at each

stage of the dynamic programming algorithm we only eliminate one rather than two,

variables. If G is a chain, an 0(1Y 111U 111U 2 1) algorithm is obtained along the same

lines.

a) (iv) We now suppose that D1 = IU21=2. Let Y1 = (1,...,m}, Y2 = t,...,n} and

assume, without loss of generality, that for each keY there exist exactly two distinct
41

elements i, j of Y such that (k,i)eI, (k,j)eI.
2

Note that we have a "YES" instance of DSI if and only if

3u ,...,u n eU 2 3vl ,...,veu1  V(k,i)eI [(vk,u)eS(k,i)] . (3.2.4) 0

1m

*
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Consider also the statement

3ul, .... ,uneu2 V(ij)ey2 XY2 V keY1[[(ki)ei A(k,j)eI Ai#j]

3vkeUl[(vk,ui)eS(k,i)A (VkUj)eS(k,j)] (3.2.5)

which is equivalent to

u 1,...,u eu2 V(ij)e Y 2xY 2[(u ,u )eS'(ij)], (3.2.6)1 n 2 2 i

where

S'(i,j) = {(uu')eU2xU2 : VkeY1 [(k,i)eIA (k,j)eIA i#j]=>

3VkeUl [(vk,u)eS(k,i) A (Vk, u')eS(kj)]li. (3.2.7)

If (3.2.4) holds, then it is easy to see that (3.2.5) holds, as well, with

the same assignment of values to uivk.  Conversely, assume that (3.2.5) holds.

For each k, there exists only one pair (i,j) such that the condition

[(k,i)eI]A[(k,j)eI]A[(i # j)] holds. Accordingly, for each k, the clause

[(vk,u.i)eS(ki) A(v ,uj)eS(k,j)] needs to be checked only for one pair (i,j).

Therefore, for each k, a value of vk which makes (3.2.5) true can be chosen regardless .

of (i,j) and this value makes (3.2.4) true as well.

Therefore, we only need to show that the truth of (3.2.5) can be decided in

polynomial time. Note that, for each (i,j), the set S' (i,j) defined by (3.2.7) may

be constructed in time O(1YI11UI1). Moreover there are at most min{1Y 21 ,I1lI) pairs

to be consideredl so the sets S (i,j) may be constructed in time
2

0(IYlIUlImin{Y 21 ,IYl}). Once S'(i,j) is constructed, the statement (ui,uj)eS'(i,j)

may be expressed as a set of clauses with two literals per clause (the literals axe

the boolean variables u.,u.; this is similar to the proof of part (a) (ii)). Therefore,

deciding the truth of (3.2.5) is a special case of the satisfiability problem of pro-
I

positional calculus with two literals per clause (2SAT), which can be solved in linear ]

time. This concludes the proof of part (a).

* Sj

I



-49-

Lemma 3.2.2: RSAT is NP-complete, even if F
2=

Proof: The proof consists of reducing to RSAT (with F2=0) the problem of satisfia-

bility of propositional formulae with three literals per clause (3SAT). Given such a

propositional formula, .e shall construct an equivalent RSAT formula F, as follows:

For each variable of the original formula, we have in F an x-variable. For each

pair of variables a and b of the original formula, we add to F two triples of

y-variables Yab- and y j=1,2,3, and the corresponding "exactly one is true"

clause, for each triple. (For example, the clause "exactly one of yabl' Yab2' Yab3

is true," may be written as

(yablVYab2VYab3) A( yablVYab2 ) A (Yab2VYab3)A(Yab3VYabl))

Also, we add to F the x-variable zab and the following ten clauses:

y~ Va), (y' Vb)( y Va)( y' b)Sabl 'ab2 v  'ab2

ab 3 VZab) ,( y' ab

It is easy to verify that the above ten clauses force the variables yabl'Yab2Yabl'Yb2

* to always take the same values as the expression (aAb), (a A b),(aA b),(a A b),

respectively. Using this observation, we can rewrite any three literal clause of our

original formula as a two-literal clause of F. (For example, the clause (aVbVc) is

equivalent to (aVbVc) = (a&b)Vc = (y--,Vc) which is of the type of clause allowed

in RSAT). This completes the proof of Lemma 3.2.2. 0

.2- . -* -
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The proof of part (b) of Theorem is completed by combining part (a) of

*Lemma 3.2.1 with the following:

Lemma 3.2.3: RSAT is NP-complete, even if it is restricted to instances for which

DI=3, D 2=2.

Proof: The idea of the proof is to create multiple copies of each variable so that,

instead of connecting a "group" of variables to many other groups, we connect each

time a different copy of the same group.

Suppose that we are given an instance (F ,F ,F ,C) of RSAT with F2 =. We will

construct an equivalent instance (F, F',F',C') of RSAT, for which Dl=3, D 2=2. We let

F ={yP; 1<i<Z; j=1,2,3; p=l,...,IC1}UF 1 ,

F' { i: l<i<n; lp<ICI},

(Here yij'?ij (respectively xi,Zi, ) are meant to be copies of y.. (respectively x."-

The clauses in C' are the following:

(i) For each i, a clause stating that exactly one of y il, i2,Yi is true

0 (ii) For each i,j,p clauses stating that:

* Alj= Yi j' =,-l ~

1 1"

-*.|



(Note that an equality a=b may be written as (avb)A(avb).)

(iii) Finally, for each clause of C (say the k-th clause) introduce an equivalent ]
" clause in C' connecting the k-th copies of the variables involved. For example, if

the k-th clause is (y. .V x )it would become (y. NV x ). It is easy to check
1)i q ij q

that this new instance of RSAT has degree (3,2) and is equivalent to the original ins-

tance. This concludes the proof of the Theorem.g

j The result concerning the case DI=1 or D 1 is not surprising. It is well-known2=

that nested information structures may be exploited to solve otherwise difficult

decentralized problems. But except for the case DI=D 2=2 (which is sort of a boundary)

the absence of nestedness makes decentralized problems computationally hard. Our

result gives a precise meaning to the statement that non-nested information structures

are much more difficult to handle than nested ones.

Theorem 3.2.2 shows that even if D ,D2 are held constant, the problem DSI is, in

general, NP-complete. There is, however, a special case of DSI, with DI, D2 constant,

for which an efficient algorithm of the dynamic programming type is possible.

Theorem 3.2.3: Let YI=Y {1, 2,...,n}. Let D be a positive integer constant. Consider
12

those instances of DSI for which (i,j)eI implies either li-jL<D or Ii-Jn>n-D. Then

DSI may be solved in time which is polynomial in n.

A condition of the type li-jL< D, V(i,j)eI is fairly natural in certain ap-

plications. For example, suppose that the observations y1 and y2 are noisy measurements

of an unknown variable x (Yi=XWi) where the noises w 1 are bunded:jwil<D/2. Similarly,

the condition li-jL<_D or li-jl>n-D, (i,j)eI, arises if the observations yI, y2 are

noisy measurements of an unknown quantized angle: yi = 9+w. (od 2w), where the noises
1

* w. are again bounded by D/2.
1

* 5



Proof: This proof is effectively a generalization of the dynamic programming argument

* in the proof of part (a) (iii) of Theorem 3.2.2. Let uis assume that n>2D. For any k

such that 2D<k<n, let

r(k) (u= ,uv..uv 'IV , 2D
k~DlI.u.k k 1 2

k- 2Dv )e(U xU) such that3(UD+l D+l I--Uk-D'k-D 1 2

(u.,v.)eS(i,j), V(iii)e~l,...,kj 2r)I}

Note that r(k) is of size at most J11 2D iU2 12 . Now assume that 2D<k<n-1 and let

* i(k+l) (1 V1O2 " 'U.'V'.".D+ ' ..D1**'kly .av e(ulxU 2

k- 2D
3(u~l~D~, **' I-Dk-D)e(U xU ) such that

(u.,v )es(i,i), V(i~i)e{11...,k+l} lI}

Using the assumption ji-jj < D, or li-i Lnp-D, V(i,j)eI. we can see that

2 2
(l,...,k+l} flIC[{l,...,kl flu 'k+l

where
2

Ak+l =(,.,~-~,.,~1 fI

With this observation, f (k+l) may be rewritten as

r (k+l)=

{(u 1 11u 2 IV 2 1...IUDIVD~uIAD+1IVk-$.lI...uk+l'V+ 
Mv 1 (U 2+2

(u1 IV 1 ,U 2 V2 1 . UDVDk-DlIVkDl. , Iuk'Vl, 2er(k) and

(UiiV 6S (i j) I V (i, j) e Ak4 l9

* j +1
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Assuming that the set r(k) has been computed, we may use it to evaluate r(k+l) -

as follows: for each element of r(k) (at most u11 2DIu 2
12D elements) try each pair

-: (uk+l vk+l)e UIXU 2 (1U llIU21 pairs) and check for each (i,j)eAk+1  (A+i has at

2
most 4D elements) whether (u. ,v.)ES(i,j) holds. Therefore, given r(k), we may obtain

S r(k+l) in time O(De UIn In Finally, from r(k+l) we may easily obtain

r (k+l), by taking a projection so as to eliminate ID+I, kD+. This process may be

repeated (for no more than n stages) to compute F(n), in time O(nDIU l Dul u 2D

Then note that we have a YES instance of DSI if and only if r(n)#O.*

* Remark: The algorithm in the proof of Theorem 3.2.3 does not find a satisficing S

"o decision rule; it only determines whether one exists. However, satisficing decision

rules may be computed by keeping in the memory some of the intermediate results produced

by the algorithm.

3.3 DECENTRALIZED DETECTION

* A basic problem in decentralized signal processing, which has attracted a fair

amount of attention recently, is the problem of decentralized detection (hypothesis

testing) [Tenney and Sandell, 1981; Ekchian, 1982; Ekchian and Tenney, 1982; Kushner

and Pacut, 1982; Lauer and Sandell, 1983]. In this section we consider a simple .

(discrete) version of this problem involving only two processors and two hypotheses.

Two processors S1 and S2 receive observations y1 eY1 , y2 eY2 , respectively, where
1 2

Y. is the set of all possible observations of processor i. (Figure 3.3.1). There

are two hypotheses H and H1 on the state of the environment, with prior probabilitieso 1O

4 S..
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S22

:

* Figure 3.3.1: A Structure for Decentralized Detection.S

* 1 '"

* 1
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po and pI, respectively. For each hypothesis H., we are also given the joint prob- -

ability distribution P(yY21 IHi ) of the observations, conditioned on the event that

H. is true. Upon receipt of yi processor S. evaluates a binary message uie{Ol} -

according to a rule u. = yi(yi), where yi: Y.+{O,l}. Then, uI and u2 are transmitted

to a central processor (fusion center) which evaluates u =u u and declares hypo-

thesis H to be true if u =O,H if u =1. (So, we essentially have a voting scheme).
o o o

The problem is to select the functions yl' Y2 so as to minimize the probability of

accepting the wrong hypothesis. (More general performance criteria may be also

considered).

Most available results assume that

P(ylOiy JH.) =P(y 1 IH.)P y2 H.), i=1,2 (3.3.1) -

which states that the observations of the two processors are independent, when con-

ditioned on either hypothesis.* In particular, it has been shown [Tenney and Sandell, i

1981] that if (3.3.1) holds then the optimal decision rules y, are given in terms of
P (Ho0l Yi)thresholds for the likelihood ratio P' The optimal thresholds for the two

P (H~j.

sensors are coupled through a system of equations which gives necessary conditions of

optimality. (These equations are just the person-by-person optimality conditions).

Few analytical results are available when the conditional independence assumption is ID

removed [Lauer and Sandell, 1983]. The purpose of this section is precisely to explain

this status of affairs.

Suppose that (3.3.1) holds and let N. denote the cardinality of Y Given the

results of [Tenney and Sandell [1981]] there are only N. + 1 decision rules Y. which1

are candidates for being optimal. We may evaluate the cost associated to each pair of

candidate decision rules and select a pair with least cost. This corresponds to a

*Such an assumption is reasonable in problems of detection of a known signal in in-
dependent noise, but is typically violated in problems of detection of an unknown signa:

0 5; : -

q .C . .. ' .. :m -' - - *, ,Z,. ' ,. .,.. . " " " '. -" " " . . " - • " '" , ".'. . • ,
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polynomial algorithm and shows that under condition (3.3.1) decentralized detection

is an easy problem. Without the conditional independence assumption (3.3.1), however,

there is no guarantee that optimal decision rules can be defined in terms of thresholds

for the likelihood ratio. Accordingly, a solution by exhaustive enumeration could

N +N2
require the examination of as many as 2 pairs of decision rules. One might ex-

pect that a substantially faster (i.e. polynomial) algorithm is possible. However,

the main result of this section (Theorem 3.3.1 below) states that decentralized detec-

tion is NP-complete even if we restrict to instances for which perfect detection (zero

probability of error) is possible for the corresponding centralized detection problem.

We now present formally a suitable version of the problem:

Decentralized Detection (DD): We are given finite sets YIy2; a rational number K; a
rational probability mass function p: Y1XY2 ; a partition (A } of Y XY . Do

there exist yi: Y i +{Ol}, i=l,2, such that J(y1 ,Y2 )< K? Here

J(y 1 ,y 2 ) = P(Yy 2 )YI(yl)Y2 (y 2 ) +
1 2 (y ,y )eA21122

1 12 o0

+ p(yly 2 )[1-Y(y)y 2 (y2 ) ]. (3.3.2)

(ylY 2 ) eA

Remarks:

1. In the above definition of DD, think of Hi as being the hypothesis that (y 1 ,Y2 )eAi.

Then it is easy to see that J(y1 ,Y2) corresponds to the probability of error

associated to the decision rules y1,Y2. Note that if a single processor knew both

Y and y2 (centralized information) it could make the correct decision with

certainty. Consequently, the above defined problem corresponds to the special case

of decentralized detection problems for which perfect centralized detection is

possible.

- -" -- -. - - - - - --, - - -

• , . ..
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".-J

2. If we let K=O, then DD is a special case of problem DS with u 1=2

and is therefore polynomially solvable.

Theorem 3.3.1: DD is NP-complete
m-S

Proof: Consider the following problem of propositional calculus, which we call P:

Problem P: We are given two sets X U 1...,x }' Z = {Z ,.. .,z } of boolean var-

iables; a set D of (distinct) clauses of the form x. Az. or (x. Az.) (we assume

that for any pair (i,j) at most one of the above clauses is in D); a collection

{qij: ie{l,...,m}, je{l,...,n}} of non-negative integers and an integer K. Is there

a truth assignment for X and Z such that J<K, where

q., + q (3.3.3)
x.AzO 1 .=qij

(i,j)PA (i,.j)L2A10

AO = {(i,j): the clause (xiAzj )is in D},

Al {(i,j): the clause (x.Az.)is in D}.

Lemma 3.3.1: Problem P is equivalent to DD.

* Proof: Think of X, Z as being the sets of observations of processors S1,s2,

respectively. A truth assignment to X,Z corresponds to a choice as to what binary

message to transmit to the fusion center, given each processor's observation. Let H
0

(respectively H ) be the hypothesis that (i,j)eA (respectively A1). Finally, view
0 a'

qij, as the (unnormalized) probability that the pair (i,j) of observations is obtained

by the two processors. Pairs (i,j) that belong to neither A nor A1 may be viewed as

having zero probability and are, therefore, of no concern. Then, it is easy to verify

• that J as defined by (3.3.3) is precisely the (unnormalized) probability of error.o

*So, J is the sum of the weights q.. of the clauses that are not satisfied.

. .. . .
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In order to complete the proof of the Theorem, we need to show that P is

NP-complete. This will be accomplished by reducing to P the following (Maximum

2-Satisfiability) problem of propositional calculus which is known to be NP-complete

[Garey and Johnson, 1979] . .

MAX-2-SAT: Given a set U of boolean variables, a collection C of (distinct) clauses

over U, such that each clause c e Chas exactly two variables and an integer K<ICI,
S

is there a truth assignment for U which simultaneously satisfies at least K of the

clauses in C? (Without loss of generality, we assume that if a clause is in C, then

its negation is not in C).

Suppose that we are given an instance (U,C,K) of MAX-2-SAT. We construct an

instance of P as follows: Suppose that U.= {U ,....,u 
} " Then, let

1n

X = {x 1  x2 1 3 - i=l,...,n} and Z - {zil ,zi2 ,zi 3  1,...,n}. For each

introduce the set D. of clauses:

(x ilAz ) (x i2Az i2) (x i2Az il) (xi3 Azi2

(xi2Az 1, (xi3Az il) (xzil Az), (xi3Az i3).

To these clauses we assign the weights (L is a large integer to be determined later):

q 30L q =25wL =20Lil,i2=  i2,i2= 1  qi,i 4  qi3,i2

q i2, i3 =8L , qi3, il= 2 L '  q ili3=2 5 L ' qi3, i3 = 1 00 L
" '"

Next, for each clause (uiAu), (u .Au.), (u A u),(uvu (u.vu., (u. vu.) in

C(with i<j), introduce clauses (x ilAz j),(x i2Az j),(x i2Az j2), (x i2Az j2), (x ilAz j),

(x ilAz j), respectively. Denote this last set of clauses by Do, and assign to each

ii jl



-58-

one unit weight. We now let D n D and observe that X,Z,D,{q.}, K 4

define an instance of P.

Note that for any assignment for X,Z, the corresponding cost (equation (3.3.3))

may be decomposed as

n
J= j + J J. (3.3.4)

where JV' Xe{0,1,...,n} is the sum of the weights qi of the clauses in D which are

not satisfied

* Lemma 3.3.2: For any ie{l,...,n}, we have J.=35L if and only if either of the

following is true:

i) xil=Zil=xi3=z =1, x =z =0,
ilili3i3 i2 i2

(ii) x 2 =z 2=x 3=z =1, x Zi=0

i2=i2 13=i3= ' l ii =0

For any assignment to {x..,z..: i=1,2,3} other than the two assignments above

J. > 37L.

Proof: By direct evaluation of the costs of each possible assignment. (See

Table 3.3.1). Note that in the calculations in Table 3.3.1, we only consider assignment_

such that x =zi =1. This is because the clause (x. Az. ) carries large enough weight

13 i3 13 13
(q i3,i3=100L), so that the possibility of letting (x i3Az 3)=0 may be immediately

* discarded. 0

-- S
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TABLE 3.3.1 -

The cost of each assignment to {xi1,xi2 ,x 3, z 1 z z2,zi3}. (The factor L is omitted.)

Clause x Az x Az x Az x Az x Az x Az x Az
ii i2 i2 i2 i2 ii i3 i2 i2 i3 i3 ii ii i3

Weight 30 15 4 20 8 2 25 TOTAL

il i2 i2 1i2

0 0 0 0 15 20 2 25 62

0 0 0 1 15 20 25 60

0 0 1 0 15 20 8 2 25 70

0 0 1 1 15 4 20 8 25 72

0 1 0 0 1s 2 25 42

0 1 0 1 is 25 40

0 1 1 0 8 2 25 35.

0 1 1 1 4 8 25 37

1 0 0 0 15 20 2 37

1 0 0 1 1s 20 35

1 0 1 0 is 20 8 2 45

1 0 1 1 15 4 20 8 47

1 1 0 0 30 is 2 47

1 1 0 1 30 15 45

1 1 1 0 30 8 2 40

1 1 1 1 30 4 8 42

P.,i

I S

.1....
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In view of Lemma 3.3.2, the clauses in D. and their associated weights

have the following interpretation: the variable xil may be freely assigned, but

the remaining variables must be assigned so that x 2 zi 2
=  Z. =  xi For this j

reason the clauses in D are effectively the same as the original set C of clauses.

*1

Lemma 3.3.3: Let L be large enough so that ICI<L. Then, there exists a truth assign-

ment for U for which at least K clauses in C are satisfied, if and only if there exists

d truth assignment for X,Z-such that the resulting cost J is less or equal than

35nL + JCf-K.

Proof: i) Given an assignment for U, with at least K clauses satisfied, assign the

variables in X,Z as follows:

Xil=u l , Xi= Ul i-i = - •
2l 11 i20 1.' xi3 i3

Using Lemma 3.3.2 and the identity(3.3.4), the resulting cost in 35nL (i.e. 35L from

each collection D., i=l,...,n) plus the number of clauses in D which are not satisfied'.
1 0

(since these carry unit weight). The latter number is identical to the number of 0

clauses in C which are not satisfied, which is less or equal than ICI-K.

(ii) Conversely, given an assignment for X,Z such that J< 35nL + ICI-K, suppose that

for some ie{i,...,nl, J, > 37L. Using Lemma 3.3.2 and the inequality ICI<L, we obtain

n
J > J. > 3SnL + 2L > 35nL + Idc-K

-i=l 1-

which ij a contradiction and shows that J. = 35L, Vi. Consequently, {xilxi2 ,zi ,zi 2
1

have been assigned values in one of the two ways suggested by Lemma 3.3.2. We now

* 0

* • . - "----- ,- - - - -
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assign truth values for U, by setting ui=x. Then J is the number of clauses in
il* 0

C which are not satisfied. Moreover, since J. = 35L, ie{l,...,n}, it follows that

J < ICI-K , which implies that at least K clauses in C are satisfied. This completes

the proof of Lemma 3.3.3.3

It is easy to see that the above reduction of MAX-2-SAT to P is polynomial.

Therefore, P is NP-complete and so is DD, thus completing the proof of the Theorem. i

It should be pointed out that Theorem 3.3.1 remains valid if the problem is

modified so that the fusion center uses some other rule for combining the messages it

receives (e.g. uo = u1(1-u 2)) or if the combining rule is left free and the fusion

center is supposed to find and use an optimal such rule.

Let us now interpret Theorem 3.3.1. Although it is, in a sense, a negative

result, it can be useful in suggesting meaningful directions for future research:

instead of looking for efficient exact algorithms, the focus should be on approximate

ones. (In fact, it is an interesting research question whether polynomial approximate

algorithms for DD exist). Theorem 3.3.1 also shows that any necessary conditions to be

developed for problem DD will be deficient in one of two respects:

a) Either there will be a very large number of decision rules satisfying

these conditions,

b) Or, it will be hard to find decision rules satisfying these conditions.

Another consequence of Theorem 3.3.1 is that optimal decision rules are not given, in

general, in terms of thresholds for the likelihood ratio, because in that case an

efficient algorithm could be obtained. Of course, this fact can be also verified

directly by constructing appropriate examples. When the condition (3.3.1) holds and

decision rules are given in terms of thresholds, the decision rule of a processor can

o ~ . .
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be viewed as a tentative local decision, submitted to the fusion center. In

general, however, optimal decision rules are not threshold rules and this inter-

pretation is no more valid. Rather DD should be viewed as a problem of optimal

quantization of the observation of each processor. In that respect, Theorem 3.3.1

is reminiscent of the result of Garey, Johnson and Witsenhausen [1982], namely that

the general problem of minimum distortion quantization is NP-complete.

3.4 RELATED PROBLEMS

The best known static decentralized problem is the team decision problem

[Marschak and Radner, 1972] which admits an easy and elegant solution under linear

quadratic assumptions. Its discrete version is the following: *1

Team Decision Problem (TDP): Given finite sets Y' 1,2 U1' U2' a rational probability -l

mass function p: Ylxy2-Q and an integer cost function c: Y XY XU xU -N, find decision

rules y.: Y.i-U. i=1,2 which minimize the expected cost

J(y ,Y 2 ) = 1 c(y 2,Y ,Y(y )Y (y 2))P(y Iy 2

Yl1 Y2 2

Another problem related to DS is the following:

Maximize Probability of Satisficing (MPS): Given finite sets Y1 " Y2 , U1 , U2 a

probability mass function p: YlXY2 )Q and a function
1 2

U xU
1 2

S: YI xY 22 , find decision rules Yi: Y.-U., i=1,2, which maximize

J (Y 1 ty2) P [(Y 1 (Y 1 )'Y2 (Y2))e-S(y 1 "y2A

(which is the probability of making a satisfactory decision).

0

]1
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Given an instance of TDP, let

S(y 11y2) = {(UlU 2 ): c(Yly 2 ,u1 ,U 2 )=O}.

If we solve TDP, we also effectively answer the question whether J(yi,Y2)=O.

But this is equivalent to solving the instance of DS associated to the above definition

of S(y 1y2) . Therefore, TDP cannot be easier than DS. The same argument is also valid

for MPS. It then follows from Theorem 3.2.1 that TDP and MPS are NP-hard (that is,

NP-complete or worse) even if we restrict to instances for which 1U11=2, IU2 1=3.

However, even more is true: it suffices to notice that the problem DD of the previous

section is a special case of both TDP and MPS, with 1UI=1U2 1=2. Using Theorem 3.3.1,

we obtain:

Corollary 3.4.1: TDP and MPS are NP-hard even if we restrict to instances for which

IU=IU 1=2. This is true even if the cost function c associated to TDP is restricted1=1'2

to take only the values 0 and 1.

We could also define dynamic versions of DS or of the team problem, in a straight-

forward way [Tenney, 1983]. Since dynamic problems cannot be easier than static

ones, they are automatically NP-hard.

Corollary 3.4.1 states that unlike the linear quadratic case, the team decision
S

problem is, in general, a hard combinatorial problem. The reason for this difference

is the following: in the linear quadratic problem, Radner's theorem [Radner, 1962]

guarantees that, as a consequence of the convex structure of the problem, a person-

by-person optimal decision rule is also team optimal. This is no longer true for

nonconvex (for example, discrete) team problems. While it may be argued that finding -

person-by-person optimal decision rules is relatively easy, there is no simple criterion

..' - - .°° " . "" -. - .
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for deciding whether a given person-by-person optimal decision rule is also team

optimal and this. is really the source of the difficulty. Let us also stress here

that difficulties arising from the possibility of multiple person-by-person optima

are equally relevant to team decision problems formulated on continuous decision and

probability spaces, as is commonly done. In other words, the difficulties do not arisE

because we discretize an otherwise easy problem, but they are of a more fundamental

nature [Papadimitriou and Tsitsiklis, 1984].

3.5 ON DESIGNING COMMUNICATIONS PROTOCOLS

0 Suppose that we are given an instance of the distributed satisficing problem (DS)

and that it was concluded that unless the processors communicate, satisficing cannot

be guaranteed for all possible observations. Assuming that communications are allowed,,

(but are costly), we have to consider the problem of designing a communications

protocol: what should each processor communicate to the other, and at what order?

Moreover, since communications are costly, we are interested in a protocol which

minimizes the total number of binary messages (bits) that have to be communicated in

the worst case.

Before proceeding, we must make more precise the notion of a communication pro-

tocol and of the number of bits that guarantee satisficing. -,

Given an instance V=(Y ,Y ,U ,U ,I,S) of the problem DSI we will say that:

There is a protocol which guarantees satisficing with 0 bits of communications,

if D is a YES instance of the problem DSI. (That is, if there exist satisfici-g

decision rules, involving no communications.)

We then proceed inductively:* S1

-0O
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44

There is a protocol which guarantees satisficing with K bits of communications

(Ke N), if for some ie{i,2} (say, i=l) there is a function m: Y +{0,1}, such that

for each of the instances V'=(Y1 lm - (0 ),Y2
,UI ,U21 I [(Y1 lm - (0 ))xY2 ] ,S) and

D"=(Yf mn (1) ,Y2 ,UIU2 ,Ifl[(Y1 fm-
1 (1))xY2] ,S) there is a protocol which guarantees

satisficing with not more than K-i bits of communications. (Here m- (i)=fyleYl:m(yl)=i ) -- -

The envisaged sequence of events behind this definition is the following: Each

processor observes its measurement yieY., i=1,2. Then, one of the processors, say

processor 1, transmits a messagei-m(yl),with a single bit to the other processor.

From that point on, it has become common knowledge that y1 eY1 rm- (i); therefore, the

remaining elements of Y1 may be ignored.

We can now state formally the problem of interest:

MBS (Minimum bits to satisfice): Given an instance V of DSI and Ke N, is there a

a protocol which guarantees satisficing with not more than K bits of communications?

By definition, MBS with K=O is identical to the problem DSI. Moreover, MBS with

K arbitrary cannot be easier than MBS with K=0 (which is a special case). Therefore,

MBS is, in general NP-hard. Differently said, problems involving communications are

at least as hard as problems involving no communications.

We have seen in Section 3.2 that when Iuiiu 21=2, DSI may be solved in poly-

nomial time. Therefore, MBS with K=O, 1U11=2, IU2 1=2 is polynomially solvable.

However, for arbitrary K, this is no longer true:

Theorem 3.5.1: MBS is NP-complete, even if iu21=l{0l} and even if we restrict

to instances for which, for any (y1,y2 )e, either S(y1 ,y2 ){( 0,0)} or S(ylY 2){(,l)}. 

°S

4 5
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The above theorem proves a conjecture of A. Yao [Yao, 1979]. The proof was

mainly constructed by C. Papadimitriou and may be found in [Papadimitriou and

Tsitsiklis, 1982].

We should point out that the special case referred to in Theorem 3.5.1 concerns

the problem of distributed function evaluation: we are given a Boolean function

f: Y XY -{0,1} and we require that both processors eventually determine the value of the-,"
1 2

function (given the observation - input (yY 2)), by exchanging a minimum number of bits

In our formalism, S(y1 ,y2)={(O,0)} if f(yly 2)=O and S(yly 2)={(1,1)} if f(y1,Y2)=l.

In Section 3.2 we had investigated the complexity of DSI by restricting to ins-

tances for which the set I had constant degree (D1 ,D2) . This may be done, in principle,

for MBS, as well, but no results are available, except for the simple case in which

Dl=D2=2.

In fact, when Dl=D =2 each processor may transmit its information to the
12

other processor by communicating a single binary message and, for this reason, we have.

0 Proposition 3.5.1: MBS restricted to instances for which D =D 2=2 may be solved

in polynomial time. Moreover, an optimal protocol requires transmission of at most

two binary messages,one from each processor.

When (D1 ,D2 ) is larger than (2,2), there is not much we can say about optimal

protocols. However, it is easy to verify that there exist fairly simple non-optimal

protocols (which may be calculated in polynomial time) which involve relatively small

amounts of communication. This is because:

Proposition 3.5.2: Suppose that I has degree (D1,D2 ) and that S(y1,y2)=0, v(y1 ,y2)el.

Then information may be centralized (and therefore satisficing is guaranteed) by
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means of a protocol requiring communication of at most [log 2 (D1D2)] binary messages

by each processor. Moreover, such a protocol may be constructed in time

0((1YI!-1Y 2 1)(1YI1+1Y 2 1)). (Here [x],xeR, stands for the smallest integer larger

than x.)

Remark: It might be tempting to guess that processor 1 (respectively 2) needs to

communicate only [log2 D 2  (respectively [log 2D11) bits, but this is not true, as can

be seen from fairly simple examples.

Proof: Consider the (undirected) graph G=(Y 1 UY2,I). Here YIUY 2 is the set of S

nodes (we assume that, by possibly renaming elements, Y 1Y 2=) and I is the set of

edges. Note that G, is a bipartite graph. Each yeY. is connected to at most D.

other nodes. S

We will show that we may colour the nodes of G so that, if (y1,y2 )FI and

(yly2)eI, then y2 and y have different colours; similarly, if (y 1,Y2)e, (y{,y 2)eI,

then yly 1 will have different colours. Moreover, at most DID2 colours will be used. 0

Then, each processor i, may transmit to the other the colour of his own observation

([log 2 (DiD2 )] binary messages) and the other processor will be able to infer the exact

value of the observation of the first one.

The above mentioned colouring may be accomplished as follows: We first colour

the elements of Yl" Suppose that the first k elements y) Yl of Y1 have been

4 (k+l)
coloured. Consider the k+l element ykl. If for some i<k, there exists y2eY2

*Nevertheless, there exist protocols for centralizing information which are more effi- 0

cient than the one we construct here (A. El Gamal, private communication). See also
(Witsenhausen, 1976] for a related problem.

4S
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(k+l) ()(k+l)such that (ykI  , y2)EI and (yiy2)eI' then yl must be colored differently from "

(i) (k+l)
yl Now, y is connected to at most D elements of Y and each such element of

11 1 2
(k+l) Thsensta

Y is connected to at most D -1 elements of Y other than y l This means that
2 2 11

(k+l) ..
at most D (D -1)< D D -1 colours are prohibited for Yl). Therefore, if D D

1 2 -12 1l 1 2

Y2 may be also coloured in the same way.

With this algorithm, for each y(k+l) to be coloured we must examine II
e (i) (k+l) an M)

elements (y ,y 2 ) to check whether (y1  ,y2 )eI and (1 'Y2 ) E I " So, the set Y1 is
2

coloured in time IY I IY2I and the construction of the desired protocol takes time e

0( _~lIY21('Yl1+l 22 ' .-

0

* - 3.6 CONCLUSIONS

We summarize here the main conclusions from the investigations of this Chapter.

Even if a set of processors have complete knowledge of the structure of a decentral

ized decision making problem and the desired goal; even if the corresponding centralized

* ..., problem is trivial; even if all relevant sets are finite, a satisficing decision rule

that involves no on-line communications may be very hard to find, the corresponding

problem being, in general, NP-complete. There are many objections to the idea that

NP-completeness is an unequivocal measure of the difficulty of a problem, because it

*J
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is based on a worst case analysis, whereas the average performance of an algorithm

might be a more adequate measure; moreover NP-hard optimization problems may have very

simple approximate algorithms. However, NP-complete problems are often characterized

by the property that any known algorithm is very close to systematic exhaustive search;

they do not possess any structure to be exploited. Furthermore, NP-completeness of a

discrete problem is an indication that the corresponding continuous problem is very

likely to be hard as well. 0

Concerning the problem DS, and its variations, we may reach the following.

specific conclusions: No simple algorithm could solve DS. Given that communications

would be certainly required for those instances of DS that possess no satisficing

decision rules, it would not be a great loss if we allowed the processors to communicate

even for some instances of DS for which this would not be necessary. Even if these

extra communications-being redundant - do not lead to better decisions, they may greatly

ofacilitate the decision process and -from a practical point of view -remove some load

from the computing machines employed.

Concerning the problem of distributed detection, we have shown that it becomes

hard, once a simplifying assumption of conditional independence is removed. This ex-

plains why no substantial progress on this problem had followed the work of Tenney and

Sandell [1982].

From a more general perspective, we are in a position to say that the basic

(and the simplest) problems of decentralized decision making are hard, in a precise

mathematical sense. Moreover, their difficulty does not only arise when one is in-4

terested in optimality. Difficulties persist even if optimality is replaced by

satisficing. As a consequence, further research should focus on special cases and

easily solvable problems as well as an approximate versions of the original problems.

-

I o- - -*'- ---- - - '
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In cases where communications are necessary (but costly) there arises naturally

the problem of designing a protocol of communications. Unfortunately, if this problem

is approachawith the intention to minimize the amount of communications that will

guarantee the accomplishment of a given goal, we are again led to intractable com-

binatorial problems. Therefore, practical communications protocols can only be designed

on a "good" heuristic or ad-hoc basis, and they should not be expected to be optimal;

approximate optimality is probably a more meaningful goal. Again, allowing some redun-

dancy in on-line communications may lead to substantial savings in off-line

computations. * S!
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CHAPTER 4: CONVERGENCE AND ASYMPTOTIC AGREEMENT OF PROCESSORS

INTERESTED IN A COMMON DECISION

4.1 INTRODUCTION AND MOTIVATION

There are many situations in which several processors (decision makers) with

different on-line information (input) have to cooperate, combine their information

and arrive at a common decision. The distributed function evaluation problem of

Section 3.5 is an example. There are two issues involved here: first, the processors

must reach consensus and, second, their final decision must be a desirable one, in

some sense. Concerning the issues of what is a desirable decision, we abandon the

"satisficing" point of view of Chapter 3 and we introduce a cost function. We will

take, however, a more pragmatic approach than in Chapter 3: we will not insist that

final decisions be as desirable as possible (that is, optimal). We concentrate on

the requirement that consensus must be reached and, we require, as a secondary issue,

that the final decision takes into account the cost function involved and that it is 0

better than the decision that each processor would make if it were to rely exclusively

on its own information.

To motivate our approach, we are interested in situatiorsin which

(i) There are rigid time limits within which preliminary or final decisions

must be made.

(ii) There are communications limitations, restricting the number and the nature

of the messages that can be exchanged.

(iii) Conflict resolution procedures involving higher levels of the decision making

hierarchy, are undesirable because they are likely to result in delays and

tend to overload these higher levels.

We will be looking for a scheme which leads to consensus, while taking into considera-

tion, directly or indirectly, the above requirements.

* 0

*
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First and foremost, any scheme that would involve the centralization of all

data (by communicating them to a predetermined processor) should be considered

undesirable for the following reasons: it is often the case that too many data are

available, which would overload communications channels; moreover good decisions can

often be made on the basis of aggregations of the initial data; furthermore, if a

processor is a model of a human, the plethora of data would saturate his short-term "

memory. This implies that it is preferable to communicate a few aggregate data.

Determining an optimal way to "aggregate" is not a well-posed problem. If constraints

are placed on the number of bits to be transmitted, the problem becomes computationall

intractable, even if there is only a finite number of possible events and decisions

(Sections 3.5). On the other hand, if a message is allowed to be any real number,

all data can be coded in a single message.- Also, for any fixed aggregation protocol,

a processor could slightly change its message and code all information in the least S

significant bits of the message. (This is reminiscent of decentralized control pro-

blems in which a processor may observe the decisions of other processors - the so-

called control sharing pattern [Aoki, 1973; Sandell and Athans, 1974]). Any such _-S

trick is very sensitive to noise in the channel and is effectively just a more com-

plicated way of centralizing information. Since centralization was deemed undesirable

in the first place, any indirect way of centralizing should be also undesirable and .

explicitly prohibited.

The above discussion, as well as the conclusions in Section 3.6, imply that a

particular aggregation of the data should be chosen by means of some ad-hoc rule

that guarantees that certain desirable characteristics are present. Unless some

particular structure on the problem is assumed, the optimal decision (given a
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processor's information) seems to be a very natural message that a processor

could transmit and this is precisely the protocol that we study. Of course, a

demonstration that our scheme leads to (approximate) consensus with fewer communica-

*tions and/or computations than direct centralization has to rely on numerical ex-

perimentation and the answer will depend on the specific situation.

Problem Description and Overview

We consider the following situation: A set {1, ... ,N} of N processors possessing

a common model of the world (same prior probabilities) and having the same cost func-

t tion (common objective) want to make an optimal decision. Each processor bases its

decision on a set of observations it has obtained and we allow these observations to

be different for each processor. Given this setting, the decisions of the processors

C will be generally different. Aumann £29761 has shown, however, that agreement is

guaranteed in the following particular case: If the decision to be made is the eval-

uation of the posterior probability of some event and if all processors' posteriors

are common knowledge, then all processors agree. (In Aumann's terminology, common

knowledge of an event means that all processors know it, all processors know that

all processors know it, and so on, ad infinitum.)

The situation where each processor's posterior is common knowledge is very

unlikely, in general. On the other hand, if agreement is to be guaranteed, posteriors

have to be common knowledge. The problem then becomes how to reach a state of

agreement where decisions are common knowledge, starting from an init.al state of

disagreement.
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Geanakopoulos and Polemarchakis [1978] and Borkar and Varaiya [1982] gave the S

following natural solution to the above problem: Namely, processors start communica-

ting to each other their tentative posteriors (or, in the formulation of [Borkar

and Varaiya, 1982] the conditional expectation of a fixed random variable) and then

update their own posterior, taking into account the new information they have re-

ceived. In the limit, each processor's posterior converges (by the martingale

convergence theorem) and assuming that "enough" communications have taken place,

they all have to converge to a common limit.

The above results hold even when each processor obtains additional raw obser-

vations during the adjustment process and when the history of communications is

itself random. Similar results were also proved for a detection problem [Borkar

and Varaiya, 1982].

A related - and much more.general situation is studied in this chapter; we as-

sume that the processors are not just interested in obtaining an optimal estimate or

a likelihood ratio, but their objective is to try to minimize some common cost func.

tion, given the available information. (Clearly, if each processor has a different

cost function no agreement is possible even if each processor had identical informa--

tion). In this setting, we assume that processors communicate to each other tentativ,_

decisions (which initially will be different). That is, at any time, a processor

computes an optimal decision given the information it possesses and communicates it

to other processors. Whenever a processor receives such a message from another

processor its information essentially increases and it will, in general, update its

own tentative decision, and so on. We prove that the qualitative results obtained

in [Genakopoulos and Polemarchakis, 1978; Borkar and Varaiya, 1982] for the estimatio

00
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problem (convergence and asymptotic agreement) are also valid for the decision

making problem for several, quite general, choices of the structure of the cost

function. However, tentative decisions do not form a martingale sequence and a

substantially different mathematical approach is required for the proofs. We point

out that estimation problems are a special case of the decision problems studied in

this Chapter, being equivalent to the minimization of the mean square error.

A drawback of the above setting is that each processor is assumed to have an

infinite memory. We have implicitly assumed that the knowledge of a processor can

only increase with time and, therefore, it has to remember the entire sequence of

messages it has received in the past. There is also the implicit assumption that if

a processor receives additional raw data from the environment, while the communication

process is going on, these data are remembered forever. These assumptions are

undesirable, especially if the processors are supposed to model humans, because'

limited memory is a fundamental component of the bounded rationality behavior of

human decision makers [Simon, 1980]. We will therefore relax the infinite memory

assumption and allow the processors to forget any portion of their past knowledge.

We only constrain them to remember their most recent decision and the most recent

message (tentative decision) coming from another processor. (For a particular class

of communication protocols, we even allow them to forget their most recent decision). O

We then obtain convergence results similar to those obtained for the unbounded memory

model, although in a slightly weaker sense.

A particular problem of interest is one in which all random variables are

jointly Gaussian and the cost is a quadratic function of an unknown state of the

world and the decision. It was demonstrated in [Borkar and Varaiya, 1982] that

S

S
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the common limit to which decisions converge (for the estimation problem) is

actually the centralized estimate, i.e. the estimate that would be obtained if all

processors were to communicate their detailed observations. We prove (Section 4.4)

that the same is true in the presence of memory limitations, provided that each

processor never forget its own raw observations. (That is, it may only forget past

tentative decisions sent to it by other processors). We indicate that, for linear

quadratic Gaussian (LQG) problems, our scheme is essentially a decomposition algorithD'"-'.

for solving static linear estimation problems. As we point out in Section 4.4, this

scheme has certain appealing features: there is significant parallelism in the com-

putations which matches nicely with the assumed distribution of the data; also, in

the course of the algorithm, acceptable estimates are obtained much earlier than the

time that would be needed to compute the optimal estimate by centralizing the infor-

mation. These tentative estimates can be very useful whenever there are strict time o

limits within which certain decisions have to be made.

We also consider (Section 4.5) a slightly different scheme in which each proces-

sor transmits its tentative decision to a coordinator. The latter evaluates a

weighted average of the tentative decisions it has received and sends it back to all

processors. We show that our results remain valid for this scheme as well and suggest

an economic interpretation in which the coordinator can be viewed as some sort of

market mechanism. We also show that making optimal tentative decisions corresponds

to Nash strategies for a certain sequential game.

A weak point oi the model is that, not only each processor has the same prior

information and knows the statistics of the other processors' observations, but also

0
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has the same model of the probabilistic mechanism that generates inter-processor

communications. In particular, if this is a deterministic mechanism, a processor

must know the precise history of communications between any pair of other processors,

a strong requirement. If it is a stochastic mechanism, then there are two possibil-

ities: either the history of communications becomes commonly known on-line (at the

expense of additional communications) or each processor will have to make ,)robabil-

istic inferences about the communications between all other processors. These

weaknesses disappear, however, if every tentative decision is broadcast simultaneously

to all other processors, at each stage. In that case the history of communications

is simple, commonly known and easy to remember. (This will be the case, for example,

if a set of experts with the same objective teleconfer and take turns into suggesting

what they believe to bethe optimal decision).

In Section 4.2 we define the model and the scheme to be studied, as well as

a few special cases of particular interest. Section 4.3 contains the main results

of this Chapter. Section 4.4. specializes to linear quadratic gaussian (static

linear estimation) problems. Section 4.5 considers the scheme involving a coordinator S

to which we referred above. Section 4.6 discusses the case of processors with dif-

ferent models and Section 4.7 states the main conclusions of this Chapter.

Most of the results in this chapter appear in [Tsitsiklis and Athans, 1984]. S

4.2 MODEL FORMULATION

In this Section we present a mathematical formulation of the model informally I

described in Section 4.1. We start with the general assumptions and later proceed

to the development of alternative specialized models to be consider (e.g. memory

* S
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limitations, particular forms of the cost function etc.). As far as the description

of the sequence of communications and updates goes, we basically adopt the model of

Borkar and Varaiya [1982] excep- that time is considered to be discrete. As in

[Borkar and Varaiya, 1982], events are timed with respect to a common, absolute clock.

As far as notation is concerned, we will use subscripts to denote time and superscript,.-

to denote processors.

We assume that we are given a set {l,...,N} of N processors, an underlying

probability space (,F,P) and a real valued cost function c:Q x U -R, where U is

the set of admissible values of the decision variable. It will be useful in the

sequel to distinguish between elements of U and U-valued random variables. The

letter v will be used to denote elements of U whereas u, w will be used to denote

U-valued random variables (measurable functions from Q to U).

Assumption 4.2.1: Either

(4.2.1.1): U is a finite set, or

(4.2.1.2): U for some n.

Assumption 4.2.2: The cost function c is nonnegative and jointly measurable in (w,v)

Moreover, E[c(v)]< -, VveU. When Assumption (4.2.1.2) holds, we assume that there.

exists a positive and measurable function A:Q - R such that

A( [V-2 ' < 1 [VlV2 "W' ).C(' ,wg iv
vv 2  

2  c(,V)+C(,v 2)] - c2 , i, e, VlV 2 8U

(4.2.1)

(Remark: If we fix vI, v 2 , v 1 V2 and take expectations of both sides of (4.2.1),

it follows that A is integrable.)

*e
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Inequality 4.2.1 implies that c is a strictly convex function of v and i

strict convexity holds in a uniform way, for any fixed weQ. It also follows that

c(w,v) is continuous for any WeQ. This assumption is satisfied, in particular, if

c is twice continuously differentiable in v and its Hessian is positive definite,

uniformly in v, for any fixed weQ.

We may use the function A, defined in Assumption 4.2.2, to define a new measure

p on (F) by

p (B) = A(w )dP(w), BeF . (4.2.2)

B

This measure will be used in Section 4.3.

We now consider the generic situation facing processor i at some time n. Let

Fi C F be a a-field of events describing the information possessed by processor i
n

at time n. Because of Assumption 4.2.2, the conditional expectation E[c(v)I Fn]

exists (is finite), is F -measurable and is uniquely determined up to a set of measure
n

i
zero, for any fixed veU. Processor i then computes a tentative decision u thatnin i-
minimizes E[c(vlIF ]. The following Lemma states that u is well-defined and

n

F -measurable.
n

Lemma 4.2.1: Under Assumptions 4.2.1.2, 4.2.2, there exists a F -measurable random S
n

ivariable u , which is unique up to a set of measure zero, such that

E[c(u')IF 1< E[c'w)jFi] ' almost surely, (4.2.3)
i

for any U-valued, F -measurable random variable w. The same results are true,
n

(except for uniqueness) under Assumption 4.2.1.1, 4.2.2.
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Proof: Let, for notational convenience, g(w,v) = E[c(v) IF ]. Under Assumptions
n

4.2.1.2 and 4.2.2, g(w,v) can be chosen so that it is jointly measurable, strictly

convex in v and converges to infinity as v converges to infinity, for any eQ,

Hence, VweQ, the infimum of g(w,v) is attained by some u (W) which is unique,
n

because of strict convexity.

Let Q = k be a countable dense subset of U. Then, by continuity of g,

k=l

inf g(w,v) = infv g(wv), vUR. Moreover, inf g(w,v) is F-measurable. Let
veQ eUvEQ n

m() = qk' where k is the smallest index such that

1
g(w,qk) < inf g(w,v) +

-- m
veUi i •ab •

Then P is F -measurable and converges, for each w, to u . Hence, u1 if Fi-measurabi
m n n n n

i
Inequality (4.2.3) now follows from the definition of u and uniqueness is a

n
iconsequence of strict convexity. The measurability of un under Assumption 4.2.1.1

is trivial. i

We continue with a description of the process of communications between proces-

sors. When, at time n, processor i computes its tentative optimal decision u, itn
i 1.

may communicate its realized value (say v ) to any other processor. (If v is notn n

unique, a particular mininizing v is selected according to some commonly known rule.
n

iWhether, when and to which processors v is to be sent is a random eventwhose statis-
n

tics are described by (Q,F,P). In particular, it may depend on the data possessed by

at time n. So, we implicitly allow the processors to influence the process of com-

munications, although we do not require this influence to be optimal in any sense.

This allows the possibility of signalling additional information, beyond that contaiE

* 0
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the communication delays to be random but finite. We also assume that when a

processor receives a message it knows the identity of the processor who sent it.

We now impose conditions on the number of messages to be communicated in the

long run; these conditions are necessary for agreement to be guaranteed. Namely,

we require that there is an indirect communication link from any processor to any

other processor which is used an infinite number of times. This can be made precise

as follows:

Let A(i) be the set of all processors that send an infinite number of messages

to processor i, with probability 1. Then, we make the following assumption:
4

Assumption 4.2.3: There is a sequence ml ,.-.,kl=ml of not necessarily distinct

processors such that m.EA(mi), i=l,2,...,k. Each processor appears at least once

in this sequence. S

The main consequence of Assumption 4.2.3, which will be repeatedly used, is the

following: If {h :l,...,N} is a set of numbers such that h <h3, VjeA(i), Vi then

h =h ] Vi.

We continue with a more detailed specification of the operation of the processors.

We introduce assumptions on the knowledge Fi which are directly related to the pro-
n

perties of the memory of processor i. A processor may receive (at any time) observa-

tions on the state of the world or receive tentative decisiow (messages) of other

processors. The knowledge of a processor at some time will be a subset (depending on

tne properties of its memory) of the total information it has received up to that

time. We consider four alternative models of memory, formalized with the four assump-

tions that follow.

iLet w be any message received by processor i at time n. Our most general as-
n

i i
*sumption requires that Wn and u_ 1 are remembered at time n:

rn

o
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Assumption 4.2.4: (Imperfect Memory) For all n, the a-field F is such that

ii i
u_ and w are F -measurable.

Assumption 4.2.4 can be further weakened if some restrictions are imposed on

the communications protocol:

Assumption 4.2.5: (Imperfect Memory) For each n there exists a set I(n) of proces-

sors such that:

a) 'n-i is F3-measurable, VieI(n-l), vjeI(n)

b) Fi =Fi, Vi not in I(n).
n n-l

Intuitively, I(n) is the set of processors that update their decision at time

n. Assumption 4.2.5 is satisfied by the following two common communication protocols.'!

provided that processor i may obtain additional observations only at times such that
S

ie I (n) : "

Ring Protocol: I(n) {k}, where k is the unique integer such that l<k<N and

k+mN=n, for some integer m. Here, exactly one processor updates at any time instance

and communicates its tentative decision to the next .processor and so on.

Star Protocol: I(n) = (1,...,N-l}, if n is odd; I(n) = {N}, if n is even. Here all

processors but the last one update simultaneously, communicate to the last processor

who updates and communicates to all other processors and so on.

Assumption 4.2.6: (Own Data Remembered) Let G be the subfield of F describing all
n

information that has been observed by processor i up to time n, except for the messag-

of other processors. We assume that GiC F'.n n

St

S -
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With Assumption 4.2.6, we allow the processors to forget the messages they

received in the past, but they are restricted to remember all their past observations.

In this case the total information available to all processors is preserved.

Assumption 4.2.7: (Perfect Memory) We let Assumptions 4.2.4 and 4.2.6 hold and

i i
assume that F C F Vi,n.

n n+l

Whenever Assumption 4.2.7 holds, we will denote by F1 the smallest a-field00

containing Fn, for all n.n

We now define a few special cases of particular interest:

n(i) Estimation Problem: We are given a R -valued random vector x on (0,F,P). The

objective is to minimize the mean square error. Hence, the cost function is

T
c(v) = (x-v) (x-v), where T denotes transpose. It is easy to see that this is a

particular case of a strictly convex function covered by Assumption 4.2.2, with A(w)

being a constant.

(ii) Static Linear Quadratic Gaussian Decision Problem (LQG): Let x be an unknown

random vector. Let the sequence of transmission and reception times be deterministic.

We assume that the random variables observed by the processors are zero mean and,

together with x, jointly normally distributed. We allow the total number of observa-

tions to be infinite. Let U=Rn . The objective is to fix v so as to minimize the

T Texpectation of the quadratic cost function c(v) = vTR'+x Qv, with R>O. If follows

that the optimal tentative decision of processor i at time n is

= GE[xJF = E[GxIF ], where G is a precomputable matrix. If we redefine the ,

n pncp abl

unknown vector x to be equal to Gx instead of x, we conclude that we may restrict

to estimation problems, without loss of generality.

' "i
. • . . -.- . • . , " • . , ,. o'
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(iii) Finite Probability Spaces: Here we let Q be a finite set. Then, there

exist finitely many 0-fields of subsets of 2. Strict convexity implies that for

each a-field F C F and any w02 of positive probability there exists a unique optima]
0

tentative decision. This implies in turn that tentative decisions take values in

some finite subset of U, with probability 1. We will therefore assume, without loss

of generality, that U is a finite set.

We conclude this section by presenting a simple example that illustrates our

scheme, under imperfect memory assumptions, where each processor forgets everything,

except for its last decision and the most recent message it has received.

Suppose that we only have two processors who communicate to each other their

1 2
tentative decisions at each instant of time. Let x, z ,z , n=1,2,... be independent.n n

i i
random variables, with known probability distributions. Let y = h(x,zl) be the

observation of processor i at time n. Let c(x,v) be a cost function, satisfying

Assumption 4.2.2.

The tentative decisions are defined inductively as follows: Suppose that

i 1 2
Y n Un-l' Un-1 are known by processor i at time n. It then computes, for each v,

i i  1 2 il
the conditional cost E[c(x,v) y n-i , Un-1 1, which is equal to gn(y ,u ,U ,L

n'Y n - n n-i' n-I'

1
for some Borel function gn. Finally, it chooses a minimizing v, which is a function

i 1 2
of Yn' U 1-l Un 1  and this is its tentative decision at time n. Hence, for

1 2
appropriate functions f , f , we haven n

i fii

u f (y u I  u ) i=l,2
n n n n-I' n-i

i
If we now define (Q,F,P) to be 1-.he product of tne probability spaces on which x, z

nii 1 2 Asupin4.
are defined, and let Fi be the (u-field generated by yn' U 1 'Un-i" Assumptions 4.2n

and 4.2.4 are satisfied and the asymptotic properties of the above recursions can be

analyzed within our general framework.

* SI
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4.3 CONVERGENCE AND AGREEMENT RESULTS

In this Section we state and discuss our main results. Assumptions 4.2.2

and 4.2.3 will be assumed throughout the rest of this chapter and will not be

explicitly mentioned in the statement of each theorem. Before proceeding to our

results, we prove a Lemma to be used later.

Lemma 4.3.1: Let {u },{W } be two sequences of U-valued random variables such that

n n

lim E [c =nn lim E[c(u )] lim E[cn)] (4.3.1)
n- nn nn

*

If Assumptions 4.2.1.2 and 4.2.2 hold, then lim (u -w )=0 in L (0,F,p) and in
n-KO~ n n 2

probability.

Proof: By Assumptions 4.2.1.2, 4.2.2 and equation (4.3.1)

lirn E[A(w)}UWn1 , 1< lim E [ - c_ nunwn)] 0 (4.3.2)
nn n- 2 l

whlh shows that (u -w) converges to zero in L2 (0,F,p). Therefore, it also con-

verg;es in measure with respect to U.

Recall that A(w)> 0 and Vi(B) = fA(L)dP(M), VBeF. Therefore, V(B)=O implies

P 8h)=.. and P is absolutely continuous with respect to " . Let BS C {lu -W I>_}-
n n-

J1nce (u -w ) converges to zero in measure p, for any £>0, we have lim J(B )=0
n n n- n

and, by absolute continuity, lim P(B )=0, which shows that we have convergence in
n-i n

probability. O

Our first theorem holds under least restrictive assumptions on memory:

*That is, in the mean square with respect to the measure 1.
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Theorem 4.3.1: We assume that transmissions and receptions are deterministic,

that communication delays are bounded and that the time between two consecutive

transmissions from processor j to processor i (with jeA(i)) is bounded. Then,

g under Assumptions 4.2.1.2 (convex costs) and either Assumption 4.2.4 or 4.2.5

(imperfect memory):

a) limn (u -u )=O, in probability and in L2 (0,F,p).U-~n+l-Un) 2

b) lim (u -u )=O, Vi,j, in probability and in L2( ,Fp 1.
n-K n n 2

i i
Proof: We start with the proof under Assumption 4.2.4. Since un is F n+l-measurable,

i [c~ +l ) ] E~c ~ n) ] Snec n onl

we have (by the minimizing property of u )ELc(u )]<E[c(u )]. Since c is non-
n+1 n+l - n4

i i i i
negative, E~c(u n )I converges to some constant g We also note that (u n+l+u n)/2 i

Fi+,-measurable and by taking the limit in the relation

nrl

u +4
1 i i E Un+l+Un "
2 n+l n 2 -+ 1

we obtain lim E[c((u +u )/2)]=g . Lemma 4.3.1 then yields the first part of
n-KO n+1 n

the theorem.

Let jeA(i). Then there exist sequences {wmI and {nk} of positive integers

such that limk(mk = lim rw=om and mknk are the times of transmission and recep

tion, respectively, of the k-th message from processor j to processor i. Therefore,

uj  is Fi  -measurable, for all k, and E[c(u )]<E[c(u )] which shows that gl<_g3
1 k kn k - mk

i iUsing Assumption 4.2.3, we conclu~e that g =g , Vi,j.
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We note that (u +u )/2 is Fi -measurable and, therefore,

1 nk mkE[c (Ul)+c (U )]>E C] >E[C(Ui) (4.3.3)

2 k - 2 nk

Taking the limit in (4.3.3), using Lemma 4.3.1 and the boundedness assumptions on

the communications, we obtain the second half of the theorem.

We now assume Assumption 4.2.5. Let i(n) be a sequence of processors such

that i(n)eI(n), Vn. Then, uI(n) is Fi(n+l) -measurable and E[c(u (n))] is a
n nl n

decreasing sequence. Similarly with the first part of the proof, we conclude that
i (n+l)_ui(n)
u i -u in)converges to zero in L (0,F,p) and in probability. It follows that
n+l n 2
i i i. .. .

u n+-u and u -u3 converge to zero, for jeA(i). Using Assumption 4.2.3, u -u3

n n n n n n

converges to zero, for all i,j.,

Consider the following situation: At time zero, before any observations are

obtained, the sequence of transmissions and receptions is selected in random, ac-

cording to a statistical law which is independent from all observations to be obtained

in the future and from c(v), for any veU. In other words communications do not carry

any information relevant to the decision problem, other than the content of the

message being communicated. Suppose that the sequence of communications that has

been selected becomes known to all processors. From that point on, the situation is

identical with that of deterministic conmunnications. In fact, a moment's thought

*will show that it is sufficient for the history of communications to become commonly

known as it occurs: processor i only needs to know, at time n, what communications

have occured up to that time, so that it cat interpret correctly the meaning of the

messages .t is receiving.
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We can formalize these ideas as follows: We are given a product probability

space (Q x Q*, F x F*, P x P*) where (0,F,P) describes the decision problem and

where .(Q*,F*,P*) describes the communications process. We assume that for each

w*4M*, the resulting process of communications satisfies the assumptions of Theorem

4.3.1. Then, note that for each w*eQ* we obtain a distributed decision problem on

(0,F,P) with deterministic communications. In that case:

Theorem 4.3.2: Under Assumptions 4.2.1.2, either 4.2.4 or 4.2.5, and independent,
i i

commonly known communications (as described above), limn (u n.-un ) =

lim (u'-u)=O, in probability with respect to P x P*.
n-x* n n

Proof: Theorem 4.3.1 and the discussion preceding the statement of Theorem 4.3.2
i i

show that lim.(U n+l-u n)=O, in probability with respect to P, for all w*e2*.

Let Xn (w,w*) be the characteristic function of the set {(W,W*):I uUl-UnI<E}

Then

limf d(PxP*) =limffXdPdP*=flim fXd'dP*=l

(The first equality holds by the Fubini theorem; the second by the dominated con-
i i i

vergence theorem; the third by convergence of (u n+l-u n) to zero, with respect to the
i i

probability measure P.) This shows that un+1 -un convergence to zero in probability

with respect to PxP*. Similar steps show that u -u3 also converges to zero, in
n n

probability .3

Strictly speaking, Theorems 4.3.1 and 4.3.2 do not guarantee convergence of the

decisions of each agent.' Suppose, however, that the agents operate under the

S ..- .-
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following rule: Fix some small Y>O. Let the sequence of communications and updates

of tentative decisions take place until iui-uj l< y, Vi,j (small disagreement) and
n n

i ii
Iu n+l-un<y, Vi (small foreseeable changes in tentative decisions). Then, we obtain:

- Corollary 4.3.1: With the above rule and the assumptions of Theorems 4.3.1 or

4.3.2, the process terminates in finite time, with probability 1, for any r>O.

Proof: By Theorem 4.3.1, the UxU-valued sequence of random variables (u -u n i u
n n n+l n

converges to (0,0) in probability. It therefore contains a subsequence converging

to (0,0), almost surely. Therefore, Vy>0 and for almost all we, 3n such that
0

lun no uo+1 u Y and the termination condition is eventually satisfied
0 0 0 0

with probability one.m

When Q and U are finite, convergence and agreement are obtained after finitely

many stages:

Theorem 4.3.3: If 0 and U are finite sets, if each processor communicates all the

values of v that minimize E[c(V)IF'] and if Assumption 4.2.4 holds, then there existsni

some positive integer M such that

Vi,j and U n = uM, Vi, Vn, VWeQ.

Proof: Because of t.he finiteness of 0, there exists a finite (non-random) time after

which communications (conditioned on past events) are deterministic. We may take that

time as the initial time and assume, without loss of generality, that all conunications .

are deterministic.

* . - . *.-..-s,.> * - ____ __
:- -- - - - - - - - - -°- .~--- -
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Let u be the set of elements of U which are optimal, given F . Let w n

i- i idenote a F -measurable random variable such that w (M)eu (W), VYeQ. (Note that
n n n

i i
E[c(wl)] is independent of how w has been selected). By finiteness of 1 and U,

n n

there exist finitely many U-valued random variables and, since Ejc'+ )l) E]<ELcW I)],

we conclude that there exists some positive integer T and some g'such that
i i i i wi Fi -i

EC (wl) I = gl, Vn > T. For any n>T, E[c(wi)] = E[c(w ) and since w is F -

n n n+l n n+l1... i
measurable, wi minimizes E[c(w)] over all F +l-measurable random variables. Hence,

n n
wi (1eIi

w e u (W), VE!Q which shows that u MCU ( ) , Ywep. Again, by finiteness of
n n+l n n+l

U and 2, there exists some positive integer M such that u n+(w) n (w), n>M,

VWe, Vi.
If jeA(i), there exist m,n>M such that w# is Fi-measurable and this shows that

m n

ggJ. By Assumption 4.2.3, we obtain gi = g, i,'J. Therefore, wj minimizesi i~ hreoe J iniie" m

E[c(w)] over all F -measurable random variables and, therefore, w (w)eu (w), or,n m n

u (M) C ui(), VWeQ- Recalling Assumption 4.2.3, we obtain uJ(w) = ui(w), Vi,j, -. •1
m n m n

Vm,n>M, Vw.g

Strictly speaking, tentative decisions in the above theorem are not elements of

U but subsets of U. This is to compensate for the possibility of non-uniqueness of

optimal tentative decisions. The equalities appearing in Theorem 4.3.3 have to be

interpreted, therefore, as equalities of sets.

We now assume that the processors have perfect memory. We obtain results similar,-

to Theorems 4.3.1 and 4.3.2 under much more relaxed assumptions on the communications

process. Namely, we only need to assume the following: I
* - - . --"- . . ]
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Assumption 4.3.1: Let Mk be the k-th message sent by processor j to processor i.

13We assume that when processor i receives M, it knows that this is indeed the k-th

message sent to it by processor j.

Remark: This assumption is trivially satisfied if messages arrive at exactly the same

order as they are sent, with probability 1.

Lemma 4.3.2: Let T be a finite stopping time of an increasing family {F n of a-fields.

Let u n , n=l,2,... be random variables that minimize E[c(w)IFn], almost surely, over

all F n-measurable random variables w. Then, uT minimizes E[c (w)] over all F T-measurable

random variables w, where uT is defined to be equal to u if T-n.
n

Proof: Let X be the indicator function of the set {W:T(W)=n}. Since T is a stopping

time, X is F -measurable. Note that Xn c(u) = Xn c(u). Let w be a F T-measurable

random variable and note that X c(w) = X c(X w) and X w is F -measurable. Therefore,
n n n n n

E[XC(W)IF I X E[c(X w)IF]>XE[C(U )IF I E[X c(u )IFl = E[X c(uT)IF ].n n n n n-- n n n n n n T n -

Taking expectations, we obtain

E [Xnc (w) I >E EXnC (uT) I

and summing over all n's (and using the monotone convergence theorem to interchange

summation and expectation) we obtain E[c(w) ]>E[c(uT)] .

Theorem 4.3.3: Under Assumptions 4.2.1.2 (convex costs), 4.2.7 (perfect memory)

and 4.3.1, there exists a U-valued random variable u* such that limn.o u n Vi0 in
probability and in L ( , o 1).

2 S .,
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Proof: Since u is F +,-measurable, we have Efc(un)]< Elc(u-)n. Since c is non-
n n-I n+-i niii i

negative, E[c(u H converges to some constant gi. We also note that (u +u )/2 is
n n n+mi iii

Fi+m-measurable. Therefore, E[c((u ++un)/2)]> E[c(u +m)]>g . Fix some c>O, and.let r.-

i --
be large enough so that E[c(u n]<g i+e. Then, using Assumption 4.2.2, we obtain

ni i2 i
[A() u1-u ] Vm>0. Therefore, {un } is a Cauchy sequence in L (Q,F,p).

iBy the completeness of L2 spaces, there exists a U-valued random variable u such that i
i i

limn un=U , in L2 (,F,u) and, therefore, in probability, with respect to P. (The

proof of the last implication is contained in the proof of Lemma 4.3.1). Since

E[E[c(ui-1)IFi F ]< EEE[c(u)IF+ 1]IF I E "c(u')IF Iz~[(n+l I n+1ii n n[~ n" n F -- cuin n

{E[c(u)IF i, n=,2 .... is a supermartingale, with respect to {F. Moreover, since -
n n n

for any fixed veU, E[c(u.)IF']< E c(v)IF'I, it is a uniformly integrable super-

martingale (Meyer, 1966, Theorem T19, p.90].

Let jeA(i). Let 11 , nk be the times of transmission and reception, respectively,

of the k-th message from j to i. Because of Assumption 4.3.1, mk and nk are stopping

times of }, {F3}, respectively, and since jeA(i), they are almost surely finite
n n

stopping times, for all k. Moreover, k<mnkj and by the optional sampling theorem _

[Meyer, 1966, Theorem T28, p.90].
Si

E[c( 3,)>E[c(u)> g 9

which shows that 1.i E[c( l )]=g' . S'alarly, lix Eclu )]u-gi.
nk

0 .~ . * .*.• *.*
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Note that u is Fn -measurable and, by Lemma 4.3.2, E[c(u j )]> E[c(u )]. _ i

Taking the limit, we obtain g3>gl, and by Assumption 4.2.3, g =g, Vi,j.

We now take the limit of the inequalities

to~~~~~ obai Er'anby3

n Ok 2 n k

to obtain limE[c((u+u )/2)]=g and, by Lemma 4.3.1, li (u -u )=O, in
k mknknl7k

S L2 (,F,J p) and in probability.

We also take the limit of the inequalities

Lc( +c )]> E[c(' 1 _ _

-Er!( (u )2 u cc( u k and, by nciu. ,

to obtain )/2)I and, b Le= 4.3.1, li 1 -0.

Similarly, we obtain lim ( - )=O, which shows that u =u , almost surely..

For estimation problems (u=E[xIF']), Theorem 4.3.4 can be slightly strengthened:

[Borkar and Varaiya, 1982, Theorem 2].

Theorem 4.3.5: For estimation problems, under the assumption of Theorem 4.3.4,

convergence to u* takes place with probability 1.

We now consider the case where U is finite but (unlike Theorem 4.3.3)Q is allowed

to be infinite. Several complications may arise, all of them due to the fact that

optimal decisions, given some information, are not guaranteed to be unique. We discuss

these issues briefly, in order to motivate the next theorem.

Suppose that U-{v ,v2 1. It is conceivable that E[c(v 1 )IF ] -VE tc(v 2 )IF I is never :

zero and changes sign an infinite number of times, on a set of positive probability.

-* .~~_° •° .. *.
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In that case, the decisions of processor i do not convege. Even worse, it is conceivab

that E[c(V 1)IF']>E[c(v 2)IF'] and E[c(v,)IP]< E c(v 2 )IF ], for all n and for all W

in a set of positive probability, in which case processors i and j disagree forever.

It is not hard to show that in both of the above cases Elc(v ) IF'] = E[c(v 2 )IF], on
I

a set of positive probability and this non-uniqueness is the source of the pathology.

The following theorem states that convergence and agreement are still obtained, provide%--"..

that we explicitly exclude the possibility of non-uniqueness.

Theorem 4.3.6: Under Assumption 4.2.1.1 (finite U) and 4.2.7 (perfect memory) and if

the random variable ui that minimizes E[c(w)] over all Fl-measurable random variables

is unique up to a set of measure zero, for all i, then limn un=u', almost surely, 0n-n

and u =u , Vij.

Proof: Fix some veU and let B = {W: u'(W)--v}. Then, E[c(v)IF']< E[c(v*)IFX], Vv*#v

for almost all WeB. By the martingale convergence theorem [Meyer, 1966, Theorem T17,

p.84], we conclude that for almost all weB, there exists some N(w) such that

E~cv)I'I<Elc(v*)jF 3 Vn>N(w)
n n

Therefore, lim u (w)=v, for almost all weB and, by considering the other elements

of U as well, lim u =u , almost surely.

If jeA(i), u is r3-measurable and E[c(u )]> Ejc(u )]. By Assumption 4.2.3,

E[c(u )] = E(c(u3)], Vi,j. Therefore, for jeA(i), u minimizes Etc(W ] over all

F-measurable random variables and by the assumptions of the theurem, u =u , almost

surely. Using Assumption 4.2.3 once more, we obtain u =u , Vij.U

SI

-0
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Although the preceding theorems guarantee that (under certain conditions) all

processors will agree, nothing has been said concerning the particular decision to

which all agents' decisions converge. In particular, some simple examples show that I
the limit decision can be different from the optimal centralized solution (that is,

the solution to be obtained if all agents were to communicate all their information).

On the other hand, the centralized solution is reached for LQG problems, under the I
perfect memory assumption (Borkar and Varaiya, 1982] and is also reached generically

for an estimation problem on a finite probability space [Geanakopoulos and Polemarchakis,

1978]. This issue will be touched again in the next section.

Robustness with respect to Communication Noise

Schemes that centralize information by coding (e.g. by using the least significant

bits of the allowed messages [Aoki, 1973; Sandell and Athans, 1974] tend to require

high bandwidth and are sensitive to noise in the communication channel. In our scheme,

although real numbers are being transmitted (infinite information content), the least

significant bits are not as essential. As a result, the qualitative convergence

properties of our scheme are retained even if communications of the tentative decisions

are assumed to be noisy. We provide a proof of this fact for estimation problems, j
under the perfect memory assumption.

Suppose, as before, that at random times processor j communicates its optimal

tentative decision u n. However, the message received by the other processors is

. 3iu=u + ,where q is a random vector representing the noise in the channel. Fornn n n

simplicity, we assume that the noise vectors are independent, identically distributed.

.- A

VI

o-
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Theorem 4.3.7: Assume noisy communications (as described above). For estimation

* problems, under Assumption 4.2.7 (perfect memory), there exists a U-valued randomIi

variable u* such that lir u =u * , Vi, with probability 1.

Pro____f: Let x be the unknown vector to be estimated. Then u =E[xF I and converges

i i i
almost surely to u E[xF ]. Moreover, u minimizes E[c(w)] over all

F D-measurable random variables w. Let jEAli) and let m be the time of transmission

of the k-th message from j to i. Note that - 1u is F -measurable*(and hence
M mk nM

i-iF'-measurable) and converge.s to u~ almost surely. Therefore, u is Fl-measurable

and E[c(u 1 )]< E[c(uJ)] and, by Assumption 4.3.3, E[c(ui)] = E[c(uj)], Vi,j. The

i
minimizing property of u and the strict convexity of the quadratic cost function

i "
imply that u --u., almost surely. i

4.4 THE LINEAR QUADRATIC GAUSSIAN (LQG) MODEL

In this Section we specialize and strengthen some of our results by restricting

to the Linear Quadratic Gaussian model described in Section 4.2. (Recall that any

i ^n i
such problem is equivalent to an estimation problem; therefore, u nx i = E[xIFn 3,

for some random vector x). Theorems 4.3.1, 4.3.4 and 4.3.5 are applicable. Moreover,

0 the results of [Borkar and Varaiya, 1982] guarantee that, under Assumption 4.2.7

(perfect memory), u converges to the optimal centralized estimate, given then

information possessed by all processors. The following theorem states that the same

is true under the weaker Assumption 4.2.6.

*Here, nM is the time of reception of the M-th message from j to i.

"

2r
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Theorem 4.4.1: For the LQG problem, under the assumptions of Theorem 4.3.1 and

Assumption 4.2.6 (imperfect memory; own data remembered), limr x =x, in the mean

square, where X-E[xF ] and F is the smallest a-field containing Fi, for all i,n.
sa wr n

Proof: As is usual in linear least squares estimation, we use the setting of Hilbert

spaces of square integrable random variables. Let G be a Hilbert space of zero mean,

jointly Gaussian random variables on (,F,P) such that each component of the unknown -_

vector x and the observations belong to G. The inner product in G is defined by

<x,y> = E[xy]. "i

For each processor i, let H denote the smallest closed subspace of G containing
all observations obtained by it. Let Hi be the smallest closed subspace of G

n

containing all observations obtained by processor i up to time n. (Note that H does
n

not contain all random variables known by processor i at time n, because it does not

need to contain any of the messages received by processor i). Note also that, by

Assumption 4.2.6, H C H and that N Hk is the total knowledge available
k=l n

to all processors at time n. The centralized estimate is the projection of x on

N
Hk,. We assume, without loss of generality, that x is a scalar random variable,

k=l

since each component can be separately estimated.
ii

Let x = E[xI n] and el = x-xn and, by the orthogonality of errors and

observations, we have E[xy] = E[x y], VyeH As in the proof of Theorem 4.3.1 we haven n
i 2 i2 "

* I Ien.li 12<1en1 1  yn,i which implies that

I i 2 42 (4.4.1)>I112_>111Z I>1 jxn J 4..1

K.- -- * . *
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In particular, (4.4.1) implies that {x I } is a norm-bounded sequence. By the weak
n 1

local sequential compactness of Hilbert spaces (Yosida, 1980, p.126], {x} contains
n

a weakly convergent subsequence {x.' }. In other words, there exists an element

N k N k
^iG sc hty^ Moeoerx e  HH

eG such that<y,x> converges to<y,x >, VyeG. Moreover, xe k=l 
k=l

and since closed subspaces are also weakly closed [Yosida, 1980, Theorem 11, p. 125],

N. ^i •

Hk . Now let yell. Then,< y,x y> =<y,x>, for all 2 such that nn, which
k=l n

implies that <y,x0 > = <y,x>. Moreover, the sequence of subspaces [ n generates

H which implies that <y,x >=<y,x>, %yH

By Theorem 4.3.1, (x -x ) converges in the mean square (and therefore weakly)
n n

to zero, which implies that x is also a weak limit point of txj 1. The same argument

as before shows that<y, =<y,x>, yyeH, i. Therefore, <y,x>X>V,x , 5

N k-
Vyej Hk . But this is exactly the condition that x. is the centralized estimate,

k=l

given the observations of all processors. So, {Xi} has a unique weak limit point,
n

which is the same for all i and coincides with the centralized estimate.

It only remains to show that x converges to x strongly (in the mean square).

We know from [Yosida, 1980, p.120] that I I^I < lim infnj JIXl. On the other hand,

I[xI I2- 11 2=1 x-xo 11 i x-"X ii 12- -11 1 2  (4.4.2)

which shows that 'x11> lim sup n jx 11. Therefore, jxV 1= limn . j 1  and by
iC t.. n-Peo n Thrfoe DIj~ nn4D InIA 2=0

Theorem 8, p.124 of [Yosida, 19801, we conclude that lim nK 1 jIx -Xj =0.6

*n 1

.°S
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Note that Theorem 4.4.1 is much stronger than Theorem 4.3.1 which was proved

for the general case of imperfect memory. We have here convergence to a limit

solution which is also guaranteed to be the optimal centralized solution.

Our next result concerns the finite dimensional LQG problem in which the total

number of observations is finite. Namely, the smallest a-field containing Fi for
n

all i, n is generated by a finite number of (jointly Gaussian) random variables. In

that case, the centralized solution is going to be reached by all processors in a

finite number of stages, provided that all processors have perfect memory.

Theorem 4.4.2: For the LQG problem with finitely many observations and under Assumption

4.2.7 (perfect memory), the centralized solution is reached by all processors in a

finite number of stages.

Proof: We use again the Hilbert space formalism of the previous proof. Let Gn be
n

the subspace of G describing the knowledge of processor i at time n (both its . I
observations and the messages it has received). By Assumption 4.2.7, we have

Gi Gi
G n Gn+l C G. Since G can be chosen to be finite dimensional, there exists some M

(depending on the sequence of communications but deterministic) such that

G M G M Vn>O, Vi. Equivalently, xM+n = x, Vn>O, Vi, and by Theorem 4.4.1,

M+n M ~
i vij,

Theorem 4.4.1 and 4.4.2 imply that the scheme considered in this Section may be

viewed as an algorithm for solving static linear estimation problems, an issue that we

discuss below.

The intuitive argument behind Theorem 4.4.2 is the following: once a processor has

received enough messages, it is able to infer exactly the values of the observations
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of the other processors (or of some appropriate linear combinations of these

observations) and compute the centralized solution itself. So, communicating

optimal tentative decisions is in this case just another way for communicating all

information to all other processors. This scheme does not seem to have any particular

advantages (in terms of communication and computation requirements) over the scheme

where each processor communicates all its data directly.

However, the scheme of Theorem 4.4.1 (imperfect memory) seems to have some

appealing features, which we will now discuss. Suppose that a central processor

obtains a NM-dimensional vector of observations. Instead of inverting the NMxNM

3 34covariance matrix (which would require O(N M ) operations) it splits its observations

into N M-dimensional vectors. Each M-dimensional vector is to be handled by a dif-

ferent processor and suppose that the scheme of Theorem 4.4.1 is to be used. If the -

ring protocol is to be used, there will be one inversion for each M-dimensional vector S
3 )

of observations and for each round. This leads to O(NM ) operations per round. If, " i

for example, an acceptable estimate is obtained after O(N) rounds, the final objective -i

3 3will have been accomplished with a total of O(N M3) operations, which is one order of

magnitude less than the standard algorithm. It is not hard to show that if the noises

in observations belonging to different blocks of data are uncorrelated, agreement on j
the optimal is obtained after two rounds only. Accordingly, if the noises in observa-

tions in different blocks are weakly correlated, we expect this scheme to be faster .

"' than the standard algorithm. This suggests that our scheme corresponds to a potentiall
61

advantageous decomposition algorithm for static linear estimation problems. This 0

algorithm has some similarities with those suggested by Laub and Bailey [1978].

" :1
S..



We now continue with an analysis of the convergence rate of the decomposition

algorithm, for two particular communication protocols. Let G be a Hilbert space of

zero-mean, Gaussian random variables. Let H ,...,H be closed subspaces and let H

1 N
be the smallest subspace of G containing H , ... ,HN

. Let xEG be a random variable to

be estimated.

- Algorithm 1 (Star Protocol):

Y = 0 (4.4.3)

o 1n  N]
Yn = E[xlY ' y N n>l (4.4.4)

n n n

i E[xIHi,y°] n>l, ie{1,...,N} (4.4.5)

Yn+l -

Algorithm 2 (Ring Protocol):

1 1
y = E [xjH (4.4.6)

i+1 E[xHi+l,yi  , n>1, (4.4.7)
Yn + >, ie{1,...,N-l}, (..)-
n

Y1 = E[xIHlyN n>l . (4.4.8)

~n+l n
i

By Theorem 4.4.1, yn converges to E[xlH], in the mean square, for either of

the above algorithms. Theorem 4.4.3 below states that the mean square error converges

geometrically to the optimal mean square error, which is a stronger result. Similar

convergence rate results may be proved for a variety of other protocols as well, with

much more "chaotic" sequences of communications. However, the proof for these two

examples are sufficient to illustrate the main idea of a more general proof.
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Theorem 4.4.3: Let H be finite dimensional. For any zeH, z#0, let

2

i ~~ I IE z I H I

- and

a. in a z (4.4.10)

Then, O<ct<l and

a) For the star protocol

+0.-^12 
0(~a AY ,12II1 -xIL <1a Hyx~ (4.4.11)

*b) For the ring protocol

I yN 2 <(12 11 N~ 2 (..2

n+l"' <- N yn

where
x =E(xIHI.

Proof: The inequality a <l is trivial. Suppose, to derive a contradiction, that

* a=0. It is easy to see that the infimum, in the definition of a, is attained by -

ii

z is orthogonal to H, Vi. But this contradicts the assumptions zeH, Z#O

*a) Using (4.4.9) and simple orthogonality relations:

o 2 2
II^ Y011H',y]I- = - I1,o I

nn n

* o 2  2

~II^ Y0II IIEx-x-yOIH 'H =

II^-yoII2 (la(' (-y 0 )) .(4.4.13)

n0

. . . %
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Therefore,

S o 2 12 i(_o)

o 2

n n n

.:~ )Ix^-y n 0 (4.4.14)-

Now note that..'.

E[-xIH 'yn ] = E [ E LX I I Hiy) I E~xIH''Y] =Ynl (4.4.15) _

and that

^A. O 2 ^ 112
S<Ix-Yn+l _in x[-(Yn+l . 4.4.16)

i .-l

Inequalities (4.4.14)-(4.4.16) yield (4.4.11).

i-i N
b) For notational convenience, we will interpret y n with i=l, as yn"Yn+l 

_

Again, starting from (4.4.9), we have:

C&II%.yN11 2 <mxci N) jj _ NI12lX-y n i  < max a •X- y -
n n

^N ]i 2
-max IIE[X-Yn IHII <

i

<max IIE(X_yiHi i- 2
n l

i N i-1 1
2

-- max IIE Yn+l-Yn 'Yn+lI l
i

2,i N (4.4.17)

< max ,lYn+l-Ynlln n

Vi-' 2. 4.4.18

o. o-
".. - . -: .. . . . *" .. . . . . -.
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and note that

i-i ii E i-i i-i [ i 1 i-i.Yn+l EXIY n+l]  [E[x H'Yn+IYn+i = E n+l lYn+l (4.4.19)

- s i-i -

This implies that y is orthogonal to y
n+l n+1_

-. Therefore,

i 2 i-i 2 2
Iyn+111 = IIyn+lII + Ilyn+l , (4.4.20) •

N 2 12 N *112
n+l l II + ( IIn+xl (4.4.21)

i=l

Using (4.4.20) and (4.4.21) in (4.4.17), we have

"N1 2  i 2 <IX-ylI  max 11[ +ll<
i k=l

k 2
<_ xJ 1 'lyn+l'' =
i k=l

N ~i 2
N

N ( IyN 2 N
I~~" n,1 

-|~nI

N112_1^ YN 2

N I 2 - l2 )  (4.4.22)

(The last equality is obtained from

IIll2 = lI-ynl + N2yl (4.4.23)

n n.



-105-

which is a consequence of the orthogonality conditions for linear estimation).

Rearranging (4.4.22), we obtain (4.4.12).g

The main conclusion from Theorem 4.4.3 is that the estimation error decreases

geometrically, at a rate which is independent of the vector being estimated, but

* 1 Nwhich depends on the subspaces H1
,... ,H . In particular, the constant at depends on

." the angles between these subspaces. Accordingly, the convergence rate of the algorithm

may vary significantly when different decomposition of the space H are tried.

1 NApparently, a is larger when the subspaces HI ,...,H are nearly orthogonal, in which

case a behaves like 1/N, as N changes. This suggests that more rounds of computations

are needed, in general, if a finer decomposition is used. On the other hand, finer

decompositions require fewer computations per round, because smaller covariance

matrices have to be inverted. Theorem 4.4.3 is not adequate to resolve this tradeoff,

primarily because inequalities (4.4.11), (4.4.12) are not particularly tight.

Theorem 4.4.3 suggests that the ring protocol can lead to a much slower algorithm

than the star protocol. Numerical experimentation, however, did not reveal any such

effect. This may be explained by observing that the proof of part (b) of the Theorem

utilizes bounds which are likely to be much less tight than those in part (a), most

notably, the inequality [ i'n 1I < i n 2
k=l k-

We continue this Section with a discussion of the implementation of the decomposi-

tion algorithm. First, it may be used by a single processor (centralized computation),

as an alternative to a standard algorithm for inverting the covariance matrix. Or, it -.- -L

- -.

. .. * * . . * * .** . * 4 ."
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may be implemented in a decentralized manner, whereby each block of data corresponds I
^i ito a physically distinct processor. Note that, for any i, n, we have x =a y,
n n

where xn  is the estimate of the i-th processor at time n, y is the vector of all

available observations and a is a row vector. When processor j receives x , it
i ,

must also know a , in order to be able to extract information from x • There are
n n

two choices:

a) Processor j computes a , possibly off-line.n
i

b) Processor i transmits a to processor j.
n

Which of the two should be done depends on whether communications or computations

are more costly. Whether any one of the above two variations can be useful depends

on the particularities of the actual situation and its inherent communication and

computation limitations. More numerical experience is needed before a definite answer

can be given. .
Numerical Results

Let x be an unknown scalar, zero mean, random variable to be estimated

2
(E[x ]=5.) Let yi=x+wi, (i=i,...,18) be the observations. The noises wi are assumed

to be independent of x. We split the 18-dimensional

observation vector into blocks of data (corresponding to distinct processors) and used -

the decomposition algorithm of Theorem 4.4.1. We employed the ring protocol and

assumed that at each stage a processor only knows its own observations and the most

recent message it received (Assumptions 4.2.5, 4.2.6).

t The covariance matrix E of the vector of noises was randomly generated.

0w

0i

.'-•"*7 u ' ' .':-*.
,'* ' 7 . . , : .. * t " " " , ' .• * -." •. . .' . . - * "" i .'. -
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Let M. be the number of observations assigned to processor i. We considered

two alternative decompositions: (i) N=2, MI=10, M =8; (ii) N=6, Ml= ...=M =3. We
1 2 1 6

first executed the algorithm using the covariance Ew and, then, once more using the

covariance Zw+I.

The results are presented in Figures 4.4.1, 4.4.2. The horizontal axis denotes

stages (each stage corresponds to an update by some processor) and the vertical axis

indicates the associated mean square error. The dotted horizontal line indicates the

centralized mean square error. The curves D1 and D2 corresponds to the first and

second decomposition, respectively. As expected, convergence was much faster when the

4 identity was added to the initial covariance; moreover the first decomposition

converged much faster than the second.

To illustrate the merits of the decomposition algorithm we performed a rough

count of operations. We only took matrix inversions into account, assuming that the

inversion of a MxM matrix requires M3 operations, which is accurate enough for our

purposes. With this counting scheme, the centralized algorithm required 5832 operations.

The points A,B in the graphs were reached after 4100, 1152 operations, respectively.

This leads to the following conclusion: While the first decomposition needs very few

stages to converge, it does not have any particular computational advantages. The

second decomposition, however, leads to an estimate close to the optimal with much

fewer operations than the centralized algorithm.

It is fair to say, however, that the decomposition algorithm we have studied

above should be compared to other decomposition algorithms for solving linear equations,

3rather than algorithms requiring 0(N3) operations.

" S]

- . * . .. e ..%
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&ERROR
2.7-

.8-

.5- DI D2

.2A ......B

STAGES

Figure 4.4.1: Mean Square Errors of Decomposition Algorithms, for
Covariance E ; Dashed Line Indicates the Optimal

* Mean Square Error.
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ERROR

D2
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I

Figure 4.4.2: Mean Square Errors of Decomposition Algorithms, for
Covariance E +I; Dashed Line Indicates the Optimal

Mean Square Error.
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4.5 A MODEL INVOLVING A COORDINATOR

In the previous sections we had assumed that for any pair of processors i,j, proc-

essor i is allowed to communicate to j. In this section we assume that a particular

processor (denoted by the superscript o) has special status and acts like a coordinator-

The scheme we envisage is the following: At each instance of time n, processor i

evaluates u which it communicates to the coordinator. The coordinator then combines
n

1 N o
u to u to produce a tentative decision u n. We assume that the coordinator has no datan n 0

of its own). It then transmits u to all other processors which accordingly update
n

1 Ntheir decisions. Were the coordinator to combine u to u "optimally", the above
n n

scheme would reduce to the one of the previous sections and our past results would

We assume, however, that the coordinator simply sets.

N
u o a un ni=l

i N .

where the coefficients a are deterministic, positive and 7N a =1. The implicit

behavioral assumptions are: (i) The coordinator has no memory and (ii) it need not -

have a good knowledge of the problem. It only knows how much it can rely on each of
i " .

the other processors; this is reflected by its choice of the coefficients a which

may be thought of as a "reliability index" for processor i in the eyes of the

coordinator. We then obtain:

Theorem 4.5.1: The conclusions of Theorem 4.3.1, 4.3.4, 4.4.1, remain true (under

their respective assumptions) with the scheme introduced in this section.

-S

0I



Proof: Since u is F+l-measurable, it follows that

ic') cuc N.. N.
E[C(Un+l 1 E[c(u)] E[c( a'u3)< a'E[c(u)] (4.5.1)-- n j l n --jn

j~l j-1

Also, since u is F n+l-measurable, E[c(u )] decreases and converges to some gn~ii:n

Taking the limit in (4.5.1) we conclude that gl=g , Vi,j From this point on, the

proofs of Theorems 4.3.1, 4.3.4, 4.4.1 (with minor modifications) are valid and

establish the desired conclusions.E

The above scheme can be viewed as a framework for cooperation, where the

coordinator simply aids the processors; or, for LQG problems, as another decomposition

algorithm. It can be also interpreted, however, from an entirely different point of

view: Suppose that the processors are selfish and independent individuals, faced with

identical situations, possessing different information and having to make repetitive

decisions. They can certainly benefit by observing past decisions of the other

processors but assume that this is not possible. They are able, however, to observe

a weighted average u of all decisions made in the last stage, which they take into
n

account for their future actions. The motivation for such a model comes primarily

from economics: Each processor is a buyer (or seller) in the same market and at each

stage he obtains some aggregate information (e.g. the average price) on the transac-

tions that were made in the previous stage. In this sense the "coordinator" simply

represents a market mechanism. Our results state that, eventually, an "informational

equilibirium" will be reached. Such an equilibrium has been studied by Radner [1979]

in a different setting. However, there was no demonstration of an adjustment process

that could lead to such an equilibrium. Our scheme provides a model of rational

behavior which, if followed by each agent, leads to equilibrium.

S. . . . . . . . . .- "*
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Moreover, within such a context (of selfish individuals confronted with .

identical situations) and for LQG problems with perfect memory, optimal tentative

decisions constitute a set of strategies in Nash equilibrium for a certain game.

(This is why optimal tentative decisions can be called "a model of rational behavior").-

Let us define the game of interest more precisely.

Let y be a vector of jointly Gaussian random variables that generate G, the i
a-algebra of events known to processor i at time n if it had received no messages.

At each stage, processor i selects a decision u and incurs (but does not observe)
n

n i o ii

cost &n c(u ), where O<ct<l and c is a quadratic cost function. Then u 0 a

is formed and communicated to all processors. The total cost to processor i is

j= i n n[c(ui)]. A strategy for processor i is a sequence {yi i1,2,.".}n=l n n
i i i o o1 N

of measurable functions such that u = y (Y ,u ,...,u ). A set {FI ,...F N } ofn n n 1 n-l

strategies is said to be in Nash equilibrium if

0N Ni (r ,F-,, i+ l .. JN)> ji(l , i  N

for any strategy Fi, for any i. Let r={Fi: i=l,...,N} denote the particular set of

strategies where each processor at each stage plays its optimal tentative decision

(Note that these are linear strategies). Then,

Theorem 4.5.2: F is a set of strategies in Nash equilibrium.

0 i
Proof: Let u , u be the coordinator messages and decisions, respectively, when alln .n

processors use r.i Let F1 be the smallest a-algebra generated by yI and u0 o
pl , unl

-- . - . .. ° .- * -. **, . -. *
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Now suppose that a particular processor, say processor i, uses a strategy P
difrntfo 1  i "0 ^i

different from , while all other processors use . Let u , u be the coordinator
n n

messages and decisions resulting from the application of this new set of strategies.
1 1 ^i1

We proceed by induction. Clearly, u is F -measurable. Assume that u and
n

l'0are F -measurable. Then, because of the linearity of the i's,

i ^i o o o o 1
Un - u n , (il), is linear in u - u I ...,u - u and hence F -measurable. Since

o. lmes1rbl1 1 ^o 1+~esual
u is F -measurablec (perfect memory), u is F -measurable, andU n n n+l n n

^i
so is u The induction shows that this is true for all n.

nI i
Therefore, by the minimizing property of u n E[c(u )]< E[c(u )], vn and this

completes the proof.@

4.6 PROCESSORS WITH DIFFERENT MODELS

The results of the preceding sections rest on the crucial assumption that all

processors have identical models of the situation; that is, they all employ the same
*|

probability measure in their calculations. In this Section we discuss what could

happen if this assumption is violated. The motivation comes from the case in which

the processors are human decision makers. Then, it is very likely that their models

will have some differences, even if they are "experts," on the problem facing them.

It is important to realize that there can be no unique normative answer on what

should the processors do in the face of model differences. Rather, we may assume

40
some general rules of behavior and then proceed to study the consequences of such

assumptions. We sketch here a few possible lines of approach, leaving more detailed

analysis for future research.
4
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Note that two processors with different models will make, in general, different

decisions, even if they have the same information. This is the same as what would

happen if they had identical models but different cost functions. (In fact, the

distinction between model and cost function cannot be made perfectly sharp). So,

differences in models may lead to situations best modelled by game theory. Moreover,

since the processors have to reach consensus, we would effectively obtain a cooperative.

(bargaining) game, consensus being reached somewhere on an appropriate negotiation

set. This game theoretic approach can have some drawbacks, mainly because game

theory requires fairly strong "rationality" assumptions. For example, it might be

necessary to assume that

a) The models of each processor are common knowledge, or

b) The models of each processor are drawn-randomly from a set of possible models

and the probability distribution associated with this random selection is common

knowledge. (This latter assumption is similar to those introduced by Harsanyi [1967;

1968a; 1968b] to address non-cooperative games with different models. However, very

little can be said, in general, under such an assumption, mainly because a probability

distribution over a set of models may be hard to handle).

An additional objection to game theoretic approaches can be the following: If

two decision makers - with different models - want to cooperate and reach consensus,

they should not bargain on an appropriate decision, but they should first try to

reconcile their models.

A different situation is obtained if modelling differences exist but no processor

knows that this is the case. So, suppose that two processors employ the scheme of
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the preceding sections. Each one has a different model, but each one believes

that they have the same model. What happens then is that each processor interprets

incorrectly the messages it receives. Let us elaborate on the above statement.

Suppose, for example, that processor I computes a decision u based on its own

model. Its decision is given by u =f (), for some function f : U. Clearly, f

depends on the cost function being minimized as well as the prior probabilities

(model) assumed by processor 1. Processor 2, however, believes that processor 1 uses

a different set of prior probabilities in its calculations. So, processor 2 believes

that u =f 2 (w), for some other function f 2: 0-U. When processor 1 receives a

1 -2 1

4message with the value of uI , it deduces that the event (f2)-(ul) has occured, whereas

in fact event (f )-(u )has occured. (Here, the superscript -1 stands for the

inverse image of a function). In other words, messages code information; by not

knowing the coding rule used by processor 1, processor 2 decodes messages incorrectly.

2 -1 1
Suppose, however, that (f )-(ul)=. This means, in the eyes of processor 2:

"if processor 1 had the same model with me, it would not send me such a message;

therefore, it has a different model". Once the processors (or a subset of them)

realize that they do not share a conmon model, we are back to the game-like situation

discussed earlier in this section. Concerning awareness of modelling differences,

there are three possibilities:

* a) Some processors find out about modelling differences after the scheme has

operated for finite time only.

* b) No one finds out in finite time, but they may find out asymptotically. (This

can be made more precise).

I .1
Ia
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c) Modelling differences are not detected, not even asymptotically.

We may then pose questions of the following type:

( Ci) What are some conditions for cases (a), (b) or (c) above to occur?

(ii) For cases (a) and (b) what can be said about disagreement at the time that -

- modelling differences are detected?

(iii) For case (c), the processors must asymptotically agree. What is it they agree

upon? --- 4

(iv) Suppose that in addition to running the scheme of this chapter, each processor

performs a (sequential) hypothesis test, to test for modelling differences. When

will be modelling differences detected?

We have no results on the above questions which are topics for future research.

We can draw the conclusion, however, that modelling -differences may lead to a variety

of qualitatively different situations. Exploring such situations may lead to some

understanding of decision making in the face of modelling differences which is an

area of great practical importance.

Remark: A recent paper by Teneketzis and Varaiya [19841 shows that in the case of

an estimation problem on a finite probability space and under perfect memory, case

(b) cannot occur and if case (c) occurs then the processors agree in finite time.

In fact, it is easy to show (using Theorem 4.3.3) that this result remains valid

under imperfect memory and for an arbitrary cost function.

rJ

0 -0
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4.7 CONCLUSIONS

A set of processors with the same objective who start communicating to each

other their tentative optimal decisions are guaranteed to agree in the limit. Under

certain assumptions, this is true even if the messages are received in the presence . |

of noise and even if the memory of the processors is limited and they are allowed to "

forget some of their past knowledge. Moreover, they are guaranteed to converge to

the centralized optimal decision for linear estimation problems, provided that no

processor forgets its own raw observations. This corresponds to a geometrically con-

vergent decomposition algorithm for static linear estimation problems, on which some

numerical results are reported. S

Similar results are obtained if the processors do not communicate directly but

receive messages from a coordinator who evaluates a weighted average of all tentative

decisions. In the latter framework, for linear estimation problems and with perfect S

memory, optimal tentative decisions correspond to Nash strategies for a certain

sequential game and admit an economic interpretation.

These results are valid when all processors share the same model (identical prior S

probabilities). The characterization of the behavior of processors with different

models is an unexplored problem.

Remark: In a recent paper, Washburn and Teneketzis (1984] have studied similar

schemes from a more abstract point of view. Their approach is limited, however, to

the special case in which all processors have perfect memory.

• ° _ * - . . ., - ..



-118-,-
Ii

CHAPTER 5: DECENTRALIZED DETERMINISTIC
AND STOCHASTIC ITERATIVE ALGORITHMS

a.1 INTRODUCTION AND OVERVIEW

From a conceptual point of view, this Chapter may be viewed as a continuation

of Chapter 4. We consider again decentralized schemes in which a set of

processors make (tentative) decisions, perform computations or obtain observa-

tions and exchange relevant messages, with the end-goal of minimizing a certain
cost function. In the schemes of Chapter 4, each processor was assumed to be as

"rational" as possible: everything was imbedded in a Bayesian framework and

processors were making tentative decisions which were optimal, given their

information. The main practical difficulty with such schemes is that, at each

stage, each processor may face an optimization problem which is difficult by

itself; the only exception is the LQG problem of Section 4.4. For this reason,

it may be more useful to assume that processors do not update in an "optimal"

(Bayesian) way, but rather that they update by moving a little bit in a direction

of improvement. In other words, we are interested in gradient-like (or descent)

iterative schemes. Although a descent assumption could be considered to be an

arbitrary restriction it should be stressed that such an assumption underlies

most centralized iterative schemes for deterministic optimization, recursive

identification, stochastic approximation, random search algorithms, adaptation

and training algorithms. [Poljak and Tsypkin, 1973; Ljung, 1977a]. Given the

multitude of application areas for centralized descent algorithms, it should not

be surprising that their decentralized counterparts may be useful in a variety of

contexts as well. In fact, we discuss in later sections applications in parallel

computing systems, distributed signal processing (identification), decision making

in large organizations and data communication networks.

0O •
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Let us now elaborate on what is a genuine "decentralized algorithm."

Given any centralized algorithm, it is often straightforward to design a

decentralized (parallel) implementation, by employing a set of perfectly

synchronized processors. Such a decentralized algorithm is mathematically

identical to the original centralized one and no new analysis is required.

Synchronous algorithms may have, however, certain drawbacks: a) Syichronism

may be hard to enforce, or its enforcement may introduce substantial overhead.

b) Communication delays may introduce bottlenecks to the speed of the algorithm

(the time required for one stage of the algorithm will be constrained by the

slowest communication channel). c) Synchronous algorithms may require far more

communications than are actually necessary. d) Even if all processors are

equally powerful some will-perform certain computations faster than others, due

solely to the fact that they operate on different inputs. This in turn, may lead

to having many processors idle for a large proportion of time. For these reasons,

we choose to study asynchronous decentralized iterative optimization algorithms

in which each processor does not need to communicate to each other processor at

each time instance; also, processors may keep performing computations(or, in a

decision making context, update their decisions) without having to wait until

they receive the messages that have been transmitted to them; processors are

allowed to remain idle some of the time; finally, some processors may perform

computations faster than others. Such schemes can alleviate communication overloads

and they are not excessively slowed down by neither communication delays, nor 9

..
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by differences in the time it takes processors to perform one computation.

(A similar discussion of the meritg of asynchronous algorithms is provided by

H.T. Kung, [1976].)

We now outline the contents of this Chapter. In Section 5.2, we present

a model for decentralized computation which is a general description of the

structure of most algorithms to be studied in this Chapter. This model a,, ,ws

communications between processors to be infrequent and fairly chaotic, as well

as communication delays. An interesting and useful feature of this model is

that a global (aggregate) state of computation may be associated (in a non-

trivial way) with a decentralized algorithm.

In Section 5.3 we prove convergence of decentralized gradient-like

stochastic algorithms. We consider constant step-size algorithms (deterministic

gradient methods being a special case), as well as decreasing step-size algorithms.

For the latter case, we show that convergence is obtained even if the time between

consecutive communications goes to infinity, as the algorithm progresses.

In Section 5.4 we consider stochastic algorithms with correlated noise and

prove convergence under assumptions similar to those that are employed to show

convergence of centralized algorithms via the ODE approach.

In Section 5.5 we present some applications of our results in decentralized -!

system identification.

In Section 5.6 we consider a decentralized (deterministic) gradient algo-

rithm. This being a particularly simple algorithm, we are able to study in more

[-. detail the effect of the various parameters describing the structure of the

SI
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communication process. In Section 5.7 we indicate that these results may

form the basis of a new approach to organizational design problems. Then, in' p.I

Section 5.8 we discuss a few more potential applications of our results.

In Section 5.9 we outline some topics for further research; finally,

Section 5.10 contains a summary and some general conclusions.

A simpler version of Sections 5.2, 5.3 appears in [Tsitsiklis, Bertsekas

and Athans, 1984]. Also, a major part of this Chapter is discussed in

[Bertsekas, Tsitsiklis and Athans, 1984].

5.2 A MODEL OF DECENTRALIZED COMPUTATION

We present here the model of decentralized computation employed in this

chapter. Wealso define the notation and conventions to be followed. Related

models of decentralized computation have been used by Chazan and Miranker [1969], S

Baudet [1978] and Bertsekas [1982,1983] where each processor specialized in

updating a different component of some vector. The model developed here is more

general, in that it allows different processors to update the same component of

some vector. If their individual updates are different, their disagreement is

(asymptotically) eliminated through a process of communicating and combining their

individual updates. In such a case, we will say that there is overlap between

processors. Overlapping processors are probably not very useful in the context

of deterministic algorithms, unless redundancy is intended to provide a certain

4 degree of fault tolerance. For stochastic algorithms, however, overlap essentially

corresponds to having different processors obtain noisy measurements of the same

unknown quantity and effectively increases the "signal-to-noise ratio."

5
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Let Hi, H2, ...,HL be Banach spaces and let H=H xH 2x...xH. If 

x= (xlx 2 ...,L), x2 e H, we will refer to x as the Z-th component of x.

We endow H with the norm

II(xifx, x ) maxZ)- xZH (5.2.1) 6

Let {1,...,M} be the set of processors that participate in the dis-

tributed computation. As a general rule concerning notation, we use subscripts

to indicate a component of an element of H, superscripts to indicate an associated

processor; we indicate time by an argument that follows.

The algorithms to be considered evolve in discrete time. Even if a dis-

tributed algorithm is asynchronous and communication delays are real (i.e., not

integer) variables, the events of interest (an update by some processor, trans-

mission or reception of a message) may be indexed by a discrete variable; so,

the restriction to discrete time entails no loss of generality.

It is important here to draw a distinction between "global" and "local"

time. The time variable we have just referred to corresponds to a global clock.

Such a global clock is needed only for analysis purposes: it is the clock of an

analyst who watches the operation of the system. On the other hand the processors

may be working without having access to a global clock. They may have access to

a local clock or to no clock at all. We will see later that our results, based

on the existence of a global clock, may be used in a straightforward way to prove

convergence of algorithms implemented on the basis of local clocks only.

We assume that each processor has a buffer in its memory in which it keeps

some element of H. The value stored by the i-th processor at time n is denoted

t In most situations of interest, each H. will turn out to be finite dimensional.1
However, the generalization to Banach spaces does not introduce any new
difficulties in our analysis.

6°
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by x (n). At time n, each processor may receive some exogenous measurements

and/or perform some computations. This allows it to compute a "step" s i(n)eH,

to be used in evaluating the new vector x (n+l). Besides their own measure-

ments and computations, processors may also receive messages from other processors,

which will be taken into account in evaluating their next vector. The process

of communications is assumed to be as follows:

At any time n, processor i may transmit some (possibly all) of the

I
componentsof x (n) to some (possibly all or none) of the other processors.

(In a physical implementation, messages do not need to go directly from their

origin to their destination; they may go through some intermediate nodes. Of
4i

course, this does not change the mathematical model presented here.) We allow

for the time being, arbitrary communication delays. For convenience, we also

assume that for any pair (i,j) of processors, for any component xi and any time

n, processor i may receive at most one message originating from processor j and

containing an element of H This leads to-no significant loss of generality:

for example, a processor that receives two messages simultaneously could keep

only the one which was most recently sent; if messages do not carry timestamps,

there could be some other arbitration mechanism. Physically, of course, simul-

taneous receptions are impossible; so, a processor may always identify and keep

the most recently received message, even if all messages arrived at the same

discrete time n.

If a message from processor j, containing an element of HZ is received by '

processor i (i~j) at time n, let t'j(n) denote the time that this message was

sent. Therefore, the content of such a message is precisely 2t(tyJ(n)).

I --



22....

-124-

Naturally, we assume that t£j (n)< n. For notational convenience, we also let

ti(n)=n, for all i, L, n. We will be assuming that the algorithm starts at

time 1; accordingly, we assume that t3 (n)> 1. Finally, we denote-by T

the set of all times that processor i receives a message from processor j, -

containing an element of H£. To simplify matters we will assume that, for any

i,j,i, the set T3 is either empty or infinite.

Once processor i has received the messages arriving at time n and has also
i i

evaluated sl(n), it evaluates its new vector x (n+l)eH by forming (componentwise)

a convex combination of its old vector and the values in the messages it has

just received, as follows:

M i
x =(n+l) a (nx (t (n) + I ( n), n>l, (5.2.2)

j =1

where sI(n) is e Z-th component of s (n) and the coefficients a 3 (n) are

scalars satisfying:

(i) a] (n)>O, yi,j,£,n, (5.2.3) _

(ii) a, (n)=l, Vi,£,n, (5.2.4)

K j=1

ij(iii) a j (n)=O, VnOT , i#j (5.2.5)

Remarks:

ij
1. Note that t (n' :ias been defined only for those times n that processor i

receives a message of a particular type, i.e. for neT X However, whenever

• -• ,

"]
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t j (n) is undefined, we have assumed above that a j (n)=0, so that

equation (5.2.2) has an unambiguous meaning.

2. When we refer to a processor performing a "computation", we mean the

evaluation and addition of the term Y (n)sZ(n) in (5.2.2). With this

terminology, forming the convex combination in (5.2.2) is not called

a computation. We denote by T£ the set of all times that processor

i performs a computation involving the Z-th component. Whenever nOT19,

it is understood that s I(n) in (5.2.2) equals zero. We assume again
i

that for any i,Z the set T is either infinite or empty. Accordingly,

processor i will be called computing, or non-computing, for component £.S

i
3. The quantities Y (n) in (5.2.2) are nonnegative scalar step-sizes. These.-

step-sizes may be constant (e.g. Y (n)=Yo , Vn), or time-varying, e.g.

Y(n)=l/t', where ti is the number of times that processor i has performed "
n n

a computation up to time n. Notice that with such a choice each processor

may evaluate its step-size using only a local counter rather than a global

clock.

4. The envisaged sequence of events underlying (5.2.2) at any time n, is as

follows: processor i

(i) Transmits x[ (n) to other processors.

(ii) Receives messages x](til(n)) from other processors.

(iii) Computes si (n) .

i
iv) Evaluates x Z (n+l).
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5. Note that the combining of the vectors of different processors, in

equation (5.2.2), is done componentwise. Consequently, we can argue

inductively that x (n+l) is only a function of {s](k): jC{l,....M}, . j
ke{l,...,n}} and x (1): je{l,....M}}.

Examples

We now introduce a collection of simple examples representing various classes S

of algorithms we are interested in, so as to illustrate the nature of the

assumptions to be introduced later. We actually start with a broad classification

and then proceed to more special cases. In these examples, we model the message
receptions and transmissions (i.e. the sets T j  and the variables1

the times at which computations are performed (i.e. the sets T and the
i9i

combining coefficients a (n) as deterministic. (This does not mean, however,

"- that they have to be a priori known by the processors). We will see in Section 5.3

" "that this assumption may be relaxed.

Specialization: This is the case considered by Bertsekas (1982, 1983], where

each processor updates a particular component of the x vector specifically

assigned to it and relies on messages from the other processors for the remaining

components. Formally:

(i) M=L. (There are as many processors as there are components).

(ii) s9(n)=O, V2A, Yn. (A processor may update only its own component;

(iii) Processor j only sends messages containing elements of H.; if processor i
i ) i

receives such a message, it uses it to update x. by setting x. equal to

the value received. Equivalently,

• *
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a) If iyj and jrk, then T =0 and a (n)=0, Vn.

b) If processor i receives a message from processor j at time n,

ii ij ij iii.e. if neTi j , then a. (n)=l. Otherwise, a. (n)=0, and a. (n)=l.

Overlap: This is the other extreme, at which L=l (we do not distinguish com-

ponents of elements of H), messages contain elements of H (not just components)

and each processor may update any component of x. (For this case subscripts are

redundant and will be omitted.

We now let H be finite-dimensional and assume that J: H(0,) is a

[ _continuously differentiable nonnegative function with a Lipschitz continuous

derivative.

Example I: Deterministic Gradient Algorithm; Specialization. Let
i i

(n) Y >0, Vn,i. At each time nET. that processor i updates x., it computes0 i 

s (n) =--- (x (n)) and lets s.(n)=0, for jgi. We assume that each processor i
i i '

- communicates its component x. to every other processor at least once every B1

time units, for some constant B1. Other than this restriction, we allow the

transmission and reception times to be arbitrary. (A related stochastic algorithm

could be obtained by letting s. (n) - - (x (n)) (l+w (n)), where w (n) is unit

variance white noise, independent for different i's).

Example II: Newton's Method; Overlap. For simplicity we assume that there

are only two processors (M=2). Let y (n) = yo>O, Vn. We also assume that J is

twice continuously differentiable, strictly convex and its Hessian matrix, denoted

* S...
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by G(x), satisfies 0<6 I<G(x)<6 21,VxeH. At each time neT processor i

computes s (n) = -G- (x (n)) -xCx (x(n)). If at time n processor 1 (respectively,
2 12 1 21

2) receives a message x (t (n))" (resp. x 1t (n))), it updates its state vector
121 212a21 (212

by x (n+l) = a1 1 x (n) + a2 x 2(t 1 2 (n)), (resp. x (n+l) (t (n)) + a 2 2 x 2(n))...

Here we assume that O<a ij <1 and that a11 +a = a 21+a =1. We make the same

assumptions on transmission and reception times as in Example I.

i
Example III: Distributed Stochastic Approximation; Specialization. Let y (n)

be such that, for some positive constants Al, A2 , A1 /n <Y i(n)< A2 /n, Vn.

Notice that the implementation of such a stepsize only requires a local clock that

0runs in the same time scale (i.e. within a constant factor) as the global clock.
iiaJ - "."

For neT., let s. (n) (x- - x(n)) + w_(n). Also, s. (n)=O, for i#j and for
1 1 ax. 2 -

all n. We assume that w i (n), conditioned on the past history of the algorithm

S2~
has zero mean and that E[i wi (n)II Ix(n)]< K(J(xi(n))+l), for some constant K.

We assume that for some BI>0, 0>l and for all n, each processor communicates its

i
component x, to every other processor at least once during the time interval

[B1n ,B1 (n+l) 8] Other than the above restriction, we allow transmission and

reception times to be arbitrary. Notice that the above assumptions allow the time

between consecutive communications to grow without bound.

Example IV: Distributed Stochastic Approximation; Overlap. Let YI(n) be as

in Example III and let M=2. For neT ,let s (n) = -- L (xi (n)l + w i(n), where

Swi (n) is as in Example III. We make the same assumptions on transmission and 0

reception times as in Example III. Whenever a message is received, a processor

combines its vector with the content of that message using the combining rules

* of Example II.

0 . .*
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I.

Example V: This example is rather academic but will serve to illustrate -

some-of the ideas to be introduced later. Consider the case of overlap, assume

that H is one-dimensional, and let y (n)=l, Vn. Assume that, at each time n,

either all processors communicate to each other, or no processor sends any

message. Let the communication delays be zero (so, t (n)=n, whenever t (n)

is defined) and assume that a (n) = a (constant) at those times n that mes-

sages are exchanged. We define vectors x(n) = (x (n),...,x M(n)) and

1 Ms(n) = Cs (n),...,s (n)). Then, the algorithm (5.2.2) may be written as

x(n+l) = A(n)x(n) + s(n) . (5.2.6)

For each time n, either A(n)=I (no communications) or A(n)=A, the matrix con-

sisting of the coefficients a . The latter is a "stochastic" matrix: it has

i3
nonnegative entries and each row sums to 1. We assume that a is positive.

It follows that A = lim An exists and has identical rows with positive elements.
n-K+

We assume that the time between consecutive communications is bounded but

n
otherwise arbitrary. Clearly then, lim I A(m)=A, for all k. This example
4 n-~ m-k

corresponds to a set of processors who individually solve the same problem and,

from time to time, simultaneously exchange their partial results. It is interest-

ing to compare equation (5.2.6) with the generic equation

x (n+l) x x(n) + Y (n) s(n)

which arises in centralized algorithms.

Assumptions on the communications and the combining coefficients

We now consider a set of assumptions on the nature of the commuications and

combining process, so that the preceding examples appear as special cases. We

. . . .- .., . . - . . - .. , . . . . .. -. • . .. . - . . - - . ., . - -
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start with a relatively simple set of assumptions which are very easy to enforce,

examine their consequences and finally suggest a more general version.

For each component £e{I1,... L} we introduce a directed graph G =(V,E£) with

nodes V={l,...,M} corresponding to the set of processors. An edge (j,i) belongs
ij i.

to E if and only if T is infinite, that is, iff processor j sends an infinite

number of messages to processor i with a value of the £-th component x~.

Assumption 5.2.1: For each component £e{l,...,L}, the following hold:

a) There is at least one computing processor for component L.

b) There is a directed path in G, from every computing processor (for component£)

to every other processor (computing or not).

c) There is some c>O such that:

(i) If processor i receives a message from processor j at time n

ii iiii(i.e. if neT z ), then a 9 (n) >ct.

(ii) For every computing processor i, a£ (n)>(%, Vn.

(iii) If processor i has in-degree (in G£) larger or equal than 2, then

ii "
a£ (n) >a, Vn.

Let us pause to indicate the intuitive content of part (c) of Assumption 5.2.1,

Part (i) states that a processor should not ignore the messages it receives.

Part (ii) requires the past updates of any computing processor to have a lasting

effect on its state of computation. Finally, part (iii) implies that if processor i.

receives messages from two processor (say i,2i ), it does not forget the effects
12

of messages of processor i upon reception of a message from processor i. These
12

. ... . .. . . . . ..-
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conditions, together with part (b) of the Assumption, guarantee that any update

by any computing processor has a lasting effect on the states of computation

of all other processors.

Assumption 5.2.2: The time between consecutive transmissions of component x . .

from processor j to processor i is bounded by some BI>0, for all (j,i)eE...

Assumption 5.2.3: There are constants Bl>0, $>l such that, for any (j,i)eE

and for any n, at least one message x is sent from processor j to processor i

during the time interval [B n , B (n+l) ]. Moreover, the total number of

messages transmitted and/or received during any such interval is bounded.

Assumption 5.2.4: Communication delays are bounded by some B >0.
0-

Note that Assumption 5.2.2 is a special case of 5.2.3, with 0=l. Assumption

5.2.1 holds for all the examples introduced above. Assumption 5.2.2 holds for

Examples I,II,V; Assumption 5.2.3 holds for Examples III,IV, except for its last

part which has to be explicitly introduced. Assumption 5.2.4 also needs to be

explicitly introduced.

We now investigate the consequences of Assumptions 5.2.1-5.2.4. Note that

equation (5.2.2) which defines the algorithm is a linear system. In particular,

ii
it is easy to see that, for any i,n,Z, the variable x (n+l) is a linear combination

of the initial conditions{x(1): j=l,...,M} and the "inputs" {J (k) s (k):

k=l,...,n; j=1,...,M}. Therefore, there exist scalars $J-(nlk), for n>k, such that

M n-l MxI(n) t1'(nj0)x1(1)+ Y i(k)O J(njk)sj (k )  (5.2.7)

j=1 k=l j=l

.. . . . .. . - "- - . ,
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44

LI131

The coefficients nk are determined by the sequence of transmission and

reception times and the combining coefficients. Consequently, they are unknown,

in general. Nevertheless, they have the following qualitative properties.

Lemma 5.2.1: (i) 0_4 3 (nik), Vi,j,Z,n>k, (5.2.8)

j1=1

(ii) Under Assumptions 5.2.1, 5.2.4 anid either Assumption 5.2.2 or 5.2.3,

lim $)1J(njk) exists, for any i,j,k,X. The limit is independent of i and will
n-KO

be denoted by t3(k). Moreover, there is a constant fl>0 such that, if j is a

computing processor for component Z, then

3 (k) > V , k. (5.2.10)

The constant f, depends only on the constants introduced in our assumptions (i.e.

B ,B ,a).

(iii) Under Assumptions 5.2.1, 5.2.2, 5.2.4, there exist de[0,1) B> (depending

only on B,B,0B ) such that

max j¢ (n k) _ £(k)< Bdn -k , VX,n>k (5.2.11) - S

(iv) Under Assumption 5.2.1, 5.2.3, 5.2.4, there exist de[O,l), 6e(0,l], B>0

(depending only on Bo,B 1 $,W such that

max It I(nik) - lk)I< Bdn -k V9.,,n>k (5.2.12)
1,)

* SI
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The proof of Lemma 5.2.1 is given in Appendix A, so as not to disrupt

continuity. Let us rather try to interpret this result. Consider a scenario

iwhereby at time n all processors cease computing; that is s (m)=0, Vm>n.

Suppose, however, that they keep communicating and combining. For this scenario,

equation (5.2.7) yields

M .n-l

xi(m) = i $ 3(mjO)x (1 ) + I .J(k)4J(mjks' ( k ) . (5.2.13)
j=l k=l j=l

Taking the limit, as m-, and using part (ii) of Lemma 5.2.1, we conclude that

the limit exists, is independent of i and equals y (n) defined by

M n-l M
y (n) = $(0) x j(l) + Y '(k)('(' k ) (5.2.14)

j=l k=l j=l

So, all processors asymptotically agree on a common value. Moreover, (5.2.10)

states that the limit depends by a non-negligible factor on the updates of any

computing processor. Finally, parts (iii) and (iv) of the Lemma quantify the

natural relationship between the frequency of inter-processor communications and

the speed at which agreement is reached. I
It turns out that the results to be derived later depend only on the fact

that Lemma 5.2.1 holds. For this reason we could, for example, remove Assumptions

5.2.3 and 5.2.4 and introduce inequality (5.2.12) as an independent Assumption.

This would add some more generality to our results: for example, inequality

(5.2.12) may be valid without the communication delays being bounded. Nevertheless,

we choose to retain Assumptions 5.2.1-5.2.4 because they are easy to enforce or

verify and are simpler to visualize. -

iij. ."=
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We now continue with the development of the consequences of Lemma 5.2.1.

For aniy pair (i,j) of processors, we define a linear transformation $'D (nlk) :H-*H

by

cD zj(nlk)x = (J(nk)x ...,D"(nkk)x (5.2.15)

where x=(xl,...,xL)eH. Note that if each H2 is one-dimensional, then 0 (nlk)

may be represented by a diagonal matrix. If each H is finite-dimensional,

0ij (nlk) is a block-diagonal matrix, with the k-th block being a multiple of the

identity matrix of dimension equal to the dimension of H Finally, in the

infinite dimensional case, *i) (n k) is a (bounded) linear operator, with very

- simple structure. We norm bounded linear operators 0: H-H, using the norm induced

by the norm of H. That is,

= UP IIsu (5.2.16)

It is then a trivial consequence of Lemma 5.2.1 that lim ( 1P (nlk) exists and is

independent of i; it will be denoted by (J (k). In fact,

II(iJ (nik)-( (k)lI = max I0 (nIk)-D (k) 1 (5.2.17)

which in conjunction with (5.2.11) or (5.2.12) provides bounds on the

convergence rate of 01J (nk). 

We define a vector y(n)eH by

M n-l M 0
y(n) = DI (0)x j ( 1 ) + Y Yj (k)0j (k)s' (k) (5.2.18)

j=l k=l j=l

0 .

0 -
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This definition is consistent with (5.2.14). In fact, y(n)=(Y (n) ,..... L(n)).

Notice that y(n) is recursively generated by

y(n+l) = y(n) + y (n) j (n)s (n) (5.2.19)
j=l

The vector y(n) is the element of H at which all processors would asymptotically

agree if they were to stop computing (but keep communicating and combining) at

a time n.

It may be viewed as a concise global summary of the state of computation at

time n, in contrast with the vectorsxl(n) which are the local states of computation;

it allows us to look at the algorithm from two different levels: an aggregate and

a more detailed one. We will see later that this vector y(n) is also a very con-

venient tool for proving convergence results. We have noted earlier that equation

(5.2.2) is a linear system. However, it is a fairly complicated one, whereas the

recursion (5.2.19) corresponds to a very simple linear system in standard state

space form. The content of the vector y(n) and of the P(n)'s is easiest to

visualize in two special cases: -All

Specialization: (e.g. Examples I and III). Here y(n) takes each component from

1 Mthe processor who specializes in that component. That is, y(n)=(x1 (n),..., xM(n)).

Accordingly, 01(n) =0, for i0j, and O.(n)=l.

n- " n-i

Example V: Here 0ij (nik) is the ij-th entry of the matrix 11 A(m). It follows
m=k+l

that the limit of 0 (njk) is the ij-th entry of A, which by our assumptions

-- 9
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depends only on j. Moreover, y(n) equals any component of Ax(n). (All com-

ponents are equal by our assumptions.) If we multiply both sides of (5.2.6)
M

by A and note that AA(n)=X, we obtain y(n+l)=y(n)+ [ A. .s (n), which is
j=l 

precisely (5.2.19). - .

We conclude this section with some more discussion of the linear system

(5.2.2). We first note that (5.2.2) is not a state space representation of a

linear system because of the presence of delays. In other words, the present

states of computation {xi(n): i=l,...,M} and the future inputs

{si(k): i=l,...,M; k>n} are not sufficient to determine the future values

x (k), k>n. A linear system with delays may be always cast in state space form,

by means of a standard state augmentation procedure. In this context, the

augmented state at time n should incorporate all messages that have been trans-

mitted but not yet received. Without any assumptions on comunication delays,

this might require a state space of unbounded dimension. We note, however, a few

special cases.

1. A finite-dimensional state space representation is possible if each H.

is finite dimensional and the total number of messages that have been transmitted

before time n and have not been received until time n is bounded by some constant

independent of n. The augmented state consists of all these messages, together

with the values of x (n), for each i.

2. The boundedness condition above certainly holds if communicatiot: delays

are bounit.4 by some B 0 In such a case, we might consider the augmented state

I M 1 M
(x (n),...,x (n);...;x (n-B0),...,x (n-B0))

. . .. .
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3. Finally, if communication delays are zero, then t' (n)=n, whenever

nGT'J .  In this case, (5.2.2) is already a linear system is standard state

space form. (Compare with Example V and equation (5.2.6).) The state vector

is (x (n),...,xM (n))GHM and we may obtain easily

x (n + l } = 013(lJ~n+lln-l~ x {(n) + Y(n)s (n) (5.2.20)
j=1

• M .. n .

x (n+l) = . €13 ( nllm-l)xJ (m)+ I $D(n+llk)Yj (k)s (k) , m<n

j=l km (5.2.21)
M

y(n) = M n-1)x j n). (5.2.22) _ 0

j=l

We derive below a few inequalities pertaining to the zero-delay case which

will be used in Section 5.4.

Lemma 5.2.2: Assume that communication delays are zero and that lim 0 (n~k)

exists, for all ij,k, and is denoted by &J(k). Then,

M M
{iI O 'J(kin) = $D,(n)=l, vi,k,n,t. (5.2.23)

j=l j=l

Let x ,...,xGH. Then,

M

{ii) max 11x3 - I 3 (n)xjll < max 11xi-xll (5.2.24)
i j=l

M
1iii) 1 O J(n)xJl[ <max Ilxill, vn. (5.2.25)
j=l i

* 0
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(iv) max II 13 (kIn)x3l1 < max llx'ill, Vk,n (5.2.26)
i j=l i

(vi(inJ <j maxi l-~l, vkni~ 2  (5.2.27)

(vi) II i(kln) - D (kin) x II <
j=l ii,j

j j i

< 2M max 11013 (k In) -0c (n)lI max( Il-x11 , Vili2,k,n (5.2.28) ":

Proof:

(i) Suppose that, for all i, xi(k)=O, vk<n, that yi(n)si(n)=z, (for some

z H) and that s k(k)=O, Vkn. It follows that xl(n+l)=z, vi and, by induction,

M

we obtain x i(k)=z, Vk>n, Vi. Therefore, I 4J (kjn)z=z, Vk>n, vi.
j=l

Since z was arbitrary, we obtain (5.2.23).
M

(ii) Using (5.2.23) and (5. 2.8), it follows that ( J(n)x i  belongs to the
j=l

convex hull of { for any component Z. Therefore,

M
max 114- 03$(n)x~ii < max IIx' x3il (5.2.29) __

i j=l i,j

We then take the maximum with respect to £ and recall that we are using the

max-norm to obtain (5.2.24).

(iii) By convexity, again

11 1 $,(n)x'll < max llxlII, V. (5.2.30)

j=l i

and the conclusion follows similarly, as in part (ii).

* .. 0. -%
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(iv) The proof is identical with that of part (iii).

(v) For any component Z, note that I PD (kln) - (kn)jx.
j=l

is the difference between two elements in the convex hull of {xZ,... ,xM.

Hence it is bounded by max x Xj11. Taking the maximum over Z, we recover

(5.2.27) ..- -

(vi) Note that, for any ii 3 ,k,n,

M n i i I
Ij (k n)x3 = x 3 (5.2.31)

j=l

due to (5.2.23). Hence, for any i
3

M 1 . . M 1. 2 [ i31 1 [ D [@ l (kln)- 12 (kjn)]x311= I I I. [ D 1 (kln)- 23(kln)][x -x ]11 < ""

j=l j =1

<. ( l(k I n) -(J(n) I1 +1 I'J(n) - 2(kjn) H) llxJ-x 3 _  -

<2M max lVjD(kjn) - 3(n)jj max jjx1-x311 . (5.2.32)
i,j i,j

The model of computation introduced in this Section may be generalized in S

several directions [Bertsekas, Tsitsiklis and Athans, 1984]. To name a few

examples, the updating rules of each processor need not have the linear structure

of equation (5.2.2); also, it may be convenient to communicate other information,

besides the values of components (e.g. derivatives of the cost function; see

Section 5.6). In the most general case, we would expect that a model as general as

thaof Section 2.1 might be needed. However, except for Section 5.6 (which treats

a special case), the present model is sufficient for our purposes.

" -. - " , ii " " ' ,
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5.3 DECENTRALIZED GRADIENT-LIKE ALGORITHMS

There is a large number of well-known centralized deterministic and

stochastic optimization algorithms which have been analyzed using a variety

of analytical tools [Avriel, 1976; Poljak and Tsypkin, 1973; Ljung, 1977a; -.

Kushner and Clark, 1978; Poljak, 1976, 1977, 1978]. A large class of them, the

" U. so-called "pseudo-gradient" algorithms [Poljak and Tsypkin, 1973] have the distin-

guishing feature that the (expected) direction of update (conditioned upon the

past history of the algorithm) is a descent direction with respect to the cost

function to be minimized. Examples I-IV of Section 5.2 certainly have such a

property. A larger list of examples is provided by Poljak and Tsypkin [1973]

who also show that the development of results for pseudo-gradient algorithms

leads easily to results for broader classes of algorithms, such as Kiefer-Wolfowitz

stochastic approximation. In this section we present convergence results for the

natural decentralized asynchronous versions of pseudo-gradient algorithms. We

adopt the model of computation and the corresponding notation of Section 5.2.

{1 S
] We allow the initialization ix (1),...,x (1)} of the algorithm to be random

with finite mean and variance. We also allow the updates s (n) and the step-size

i± 1i
y (n) of each processor, the combining coefficients a J(n), the times of trans-

mission, reception and computation to be random. (So, t'J(n) and the sets
" i ii

T£, T£ are random.) We assume that all random variables of interest are defined

on some probability space (2,F,P) . We also introduce an increasing sequence {F }
n

t In the case where H is infinite dimensional we must be precise on the meaninq nf
measurability. We use the concept of strong measurability [Yosida, 1980]: a function
x:Q-H is called F-measurable if and only if there exists a sequence {x } of finitely
valued functions x :90H such that lim x (M)=x(w), for almost all we2. (The limit is

n n
is with respect to the norm on H.) rr * A similar definition applies concerning meas- 4

* urability with respect to any other a-field F C F.
n

S"

. . * ... * * . * * * .-
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of 0-fields contained in F, where F is a a-field describing the history of then- -

algorithm up to time n. In particular, we define F as the smallest a-field such
n

that x (m), y (m), m<n and s i(m), re<n, are F -measurable, for each i, such that
n

ii ii i ievents nET , ne% , .belong to F for each i,j,Z,n and such that tlJ (n), aJ (n)
n

are Fn-measurable, for any neT1 j  for any i,j
n£

Notice that in the above setting, 4) z (njk) becomes a random variable, deter-

mined by the random sequence of communication times, delays and combining

coefficients. Any interesting assumptions of a statistical nature on the commu-

nicating and combining process have direct counterparts in terms of D3 (nlk).

* While we would like to allow as much randomness in the algorithm as possible,

certain restrictio.ks have to be imposed. Namely, we have to avoid the possibility

that a processor chooses to transmit at those times that it receives a "bad

measurement" s (n) or that it tends to give larger weights to bad measurements when S

forming convex combinations. This may be avoided in two ways: either by not

allowing the processors to base their transmission decisions on the state of the

algorithm, or by somehow ensuring that the long run outcome is independent of

such decisions. This suggests the following assumption.

Assumption 5.3.1: (i) The limit D 3(k) of PIj (njk), as n-, exists and is indepen-

dent of i, with probability 1. (This assumption will be strengthened later.)

(ii) For any ie{l,...,M} and any m,n such that m<n, #i(m) and s i(n) are condi-

tionally independent, given F .

The main cases in which this assumption holds are the following:

1. If interprocessor communications and the combining coefficients are modelled

as being deterministic. This does not mean that they have to be known in advance

but forbids the processors to decide whether to transmit by looking at the value

ii iof a random update s i (n) or of their state vector x (n).

6
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2. More generally, if interprocessor communications and the combining

coefficients are random but are generated by an "exogenous" source.

i i
3. If s (n) is a deterministic function of x (n). In such a case, s (n),.

i
conditioned upon Fn , is a constant, hence independent of D (k), for all k.

n'

4. If D (k) is deterministic, for all k. This is much weaker than assuming that - .

(i (nik) is deterministic, or that interprocessor communications are deterministic.

i
For example, in the specialization case, (D (k) is guaranteed to be deterministic.

In terms of the Examples of Section 5.2, the assumption of deterministic

transmission and reception times may be relaxed, except for Example IV. This is

because 0 (k) is deterministic in Examples I,III,V, and s (n) is a deterministic

function of x (n) in Example II.

We assume that the objective of the algorithm is to minimize a nonnegative

cost function J:H -[0,-). For the time being, we only assume that J is a smooth

function. In particular, J is allowed to have several local minima.

Assumption 5.3.2: J is Frechet differentiable and its derivative satisfies the

Lipschitz condition

lVJ(x)-VJ(x'fl < Klx-x'Il, vx, x'eH , (5.3.1)*i

where K is some nonnegative constant.

Remark: Since we allow the possibility of infinite dimensional spaces, VJ(x)

-• should be viewed as an element of H*, the dual of H. As usual H* is endowed with

* S

S ° . . .
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the norm inherited from H. Similarly, we denote by V J(x) the derivative of J

with respect to xj. This partial derivative belongs to H*, the dual of H

In the finite dimensional case, however, VJ(x) and V J(x) may be just viewed as

vectors in H and H,, respectively. In fact, with the notation we employ below,

they should be viewed as row vectors.

Assumption 5.3.3: The updates s (n) of each processor satisfy

V J(x<(n))E[s1(n)JF I< 0, a.s., Vi,Z,n. (5.3.2)
n-

This assumption states that each component of each processor's update is in

a descent direction, when conditioned on the past history of the algorithm and

-" is satisfied by Examples I-IV of Section 5.2.

As an immediate consequence of (5.3.2) we obtain 0

L

E[VJ(x (n)) I(n)si(n)IFn ] =  11 - (n) I]V J(x (n))EEs!(n)IF ] <0 a.s.
n -- (5.3.3)

It turns out that (5.3.3) is all that is required in our proofs. On the other

hand, it can be shown by means of simple examples that the condition

E[VJ(xi (n))si (n)IF 3n]<0, a.s.

is not sufficient for proving convergence.

The next assumption is easily seen to hold for Examples I and II of Section

5.2. For stochastic algorithms, it requires that the variance of the updates

(and hence of any noise contained in them) goes to zero, as the gradient of the

cost function goes to zero.

4i

* S>
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Assumption 5.3.4: For some K >0 and for all ij,n, -- _a
0-

E[l Is i(n) 11 2_ - KOE(VZ i(xl(n))s i(n)]1 (5.3.4)

As a matter of verifying Assumption 5.3.4, one would typically check the

validity of the slightly stronger condition

E[It I(n)I1 2 IF 1< - K V J(xi (n))E[sl(n) I I 0
n 0 n

Notice that, using Lemma 5.2.1 (ii) and Assumption 5.3.4 we obtain

i 2 L 2 K 0 LE[[Isi(n) I l[]< I E[Ils1(n)I 12< o I E[V j(xi*(n))(D (n)sl(n)]" .

KE[VJ(x (n) l i (n)s (n) (5.3.5)
0

where K =K /T) >0. It turns out that (5.3.5) is all we need for our results to

hold.

Our first convergence result states that the algorithm converges in a suitable

sense, provided that the step-size employed by each processor is small enough and

that the time between consecutive communications is bounded, and applies to

Examples I and II of Section 5.2. It should be noted, however, that Theorem 5.3.1

(as well as Theorem 5.3.2 later) does not prove yet convergence to a minimum or a -

stationary point of J. In particular, there is nothing in our assumptions that

prohibits having s (n)=0, Vi,n. Optimality is obtained later, using a few auxiliary

and fairly natural assumptions (see Corollary 5.3.1). __

"-

S

_____-- .
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Theorem 5.3.1: Let Assumptions 5.2.1, 5.2.2, 5.2.4 hold, with probability 1,

and assume that the constants (B ,B ,a) involved in them are deterministic. Let

also Assumptions 5.3.1-5.3.4 hold. Suppose that yi(n)>O and that sup y (n)<y o<-.

(Here, y is deterministic). i,n -o

There exists a constant y*>O (depending on the constants introduced in the

Assumptions) such that the inequality O<y <y* implies:
0-

a) J(x (n)), i=l,2,...,M, as well as J(y(n)), converge almost surely, and

to the same limit.

b) lim(x (n)-x (n)) = lim(x (n)-y(n)) =0, Vi,j, almost surely and
n-K n-

in the mean square.

c) The expression

Go M

y'(n)VJ(x'(n))E[s (n)l F 1 (5.3.6)"
nli=ln

nS

is finite, almost surely. Its expectation is also finite.

Leaving technical issues aside, the idea behind the proof of the above

(and the next) Theorem is rather simple: the difference between y(n) and x (n),

for any i, is of the order of ByO , where B is proportional to a bound on

communication delays plus the time between consecutive communications between

processors. Therefore, as long as Y remains small, VJ(x (n)) is approximately

equal to VJ(y(n)); hence, s (n) (and consequently i (n)s (n)) is approximately

in a descent direction, starting from point y(n). Therefore, iteration (5.2.19)

is approximately the same as a centralized descent (pseudo-gradient) algorithm

which is, in general convergent [Poljak and Tsypkin, 1973].

. -. -. .-,, .- ,.. ... . . . .
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Remark on Notation: In the course of the proofs in this section, we will use

the symbol A to denote non-negative constants which are independent of n, Y 0

Y (n), x (n), s (n) etc., but which may depend on the constantsintroduced in the

various assumptions (that is, M, L, K, KO, BO, Bi, a, etc.). When A appears in

different expressions, or even in different sides of the same equality (or

inequality), it will not necessarily represent the same constant. (With this

convention, an inequality of the form A + 1<A is meaningful and has to be inter-

preted as saying that A+l, where A is some constant, is smaller than some other

constant, denoted again by A.) This convention is followed so as to avoid the

* introduction of unnecessarily many symbols.

0
Proof of Theorem 5.3.1: We introduce a new increasing sequence {F } of

n

aY-fields contained in F. In particular, we let F0n be the smallest a-field

containing F and such that 0 (k) is F°-measurable, for all k<n. Equation
n n-

(5.2.18) then implies that y(n) (and, therefore, J(y(n))) is F°-measurable.
n

"Using the fact that P (n) is F°-measurable, we obtain

n

E[2 Jx())( 4 ~n IF°] =

0 * (n)V J(X (n))Es i(n)IFO]
9. n

(5.3.6a)(P WnV J(xi In) )E [s1(, ..•-

2, n

* where the last equality follows from Assumption 5.3.1. Using Assumption 5.3.3

we conclude that

E [VJ (xi (n))Oi (n)si (n)I °]<0, a.s. (5.3.7)

.*" .

" * . . - - . " •S .. , , i : " ' . .. . .. , . . .: . .. .. -. .
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Without loss of generality, we will assume that the algorithm is initialized

i iso that x (1)=0, Vi. In the general case where x (1)#0, we may think of the

algorithm as having started at ti'v 0, with x (0)=0; then, a random update

s (0) sets x (1) to a nonzero value. So, the case in which the processors initially

disagree may be easily reduced to the case where they initially agree.

-i" _ y (n) _ian ve asthe-ne

Note that we may define s (n) = (n) and view s (n) as the new

step with step-size yo. It is easy to see that Assumptions 5.3.3 and 5.3.4 also
-i

hold for s (n). For these reasons, no generality is lost if we assume that

y (n) = y0 ' vn and this is what we will do.

Let us define

M
b(n) I i I1s i (n)jl  (5.3.8)i=l"

and note that
M

b 2 (n) < M I lII ( n ) 11 2 < Mb 2 (n).

i=l

Using (5.2.7), (5.2.18) and Lemma 5.2.1 (iii), we obtain

n-1 M
lly~n-xi(n)ll <_  I I YoII'J(k)-(DiJ(nlk)ll 11s(k)J < •

k=1 j=l

n-1
<_Ayo d n-kb(k) . (5.3.9)

k=l 0

, • , • ° .

. o . . •
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From a Taylor series expansion for J we obtain

J(y(n+l)) J (y(n)+y 0 i~ (n) s (n) <

M. M i 12
< J(y(n)) +y 0 Vj(y(n)) I $D(n)sl(n)+ AllyO I ' (n)s (n)ll

i ~ 2
< J(y(n)) + y 0 VJ(y(n)) (D'(n)s'(n) + Ay 0b (n) .(5.3.10)

Assumption 5.3.3 is in terms of VJ(x (n)), whereas above we have VJ(y(n)). To

overcome this difficulty, we use the Lipschitz continuity of the derivative of J

and invoke (5.3.9) to obtain

M M

< A I lly(n)-xI(n)ll lls'(n)ll <

n - - M n - 1l-
<.y0A IH d *)I 1ln (I 0A Id b(k)b(n) <

k=l i=1 k=l

:SYA nI dk[b2 (k) +b2 (n)] (5.3.11)

3k=l

Let us define

G (n) =-VJ(x (n))(D (ns (n) ,(5.3.12)

G (n) = G (n) , (5.3.13)Kand note that (5.3.3) implies that E[G(n)]> 0. We now rewrite inequality
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(5.3.10), using (5.3.11) to replace the derivative term, to obtain:

J(y(n+1))< J(y(n) - y0 G(n) + Ay2b (n) + Ay0 2 dn-k[b 2 (k)+b 2 (n)l<0 0 k=l

< J(y(n))- y 0 G(n) + Ay 2  1 dn-kb2(k) (5.3.14)
0 0 k=l

Assumption 5.3.4 implies that [cf. inequality (5.3.5)]

2
E[b (k) I< AE[G(k)] (5.3.15)

Taking expectations in (5.3.14) and using (5.3.15), we obtain

n 
S

E[J(y(n+l))]< E[J(y(n))]- y0 E[G(n)] + Ay2  Z dnkE(G(k)] (5.3.16)

k=l

We then sum (5.3.16), for different values of n, to obtain

• n 20"i
0<E[J(y(n+l))]< E[J(y(1))]+ _[ - y 0  E[G(k)] . (5.3.17)

1-d1

We now let Y' where A is the constant of inequality (5.3.17), and
2A

assume that 0<y Y*. Then, inequality (5.3.17) implies

n
Y0 I E[G(k)]< 2E[J(y(l))], vn, (5.3.18) -
k1l

and letting n tend to infinity,

* y0  E[G(k)]<o " (5.3.19) -
k=l

"* 6.

_*_ 6



-IO
-i- - - -- . -- - - -- .. . - - - . -----

By Assumption 5.3.3 and (5.3.6a), E[G(k)IFk]>0, Vk; we may apply the monotone

convergence theorem to (5.3.19) and obtain

El ( EGk I E[G(k)] <w (5.3.20)
k=1 k=l

which implies

Z E[G(k)jF ]< , a.s. (5.3.21)
k=l

From (5.3.21) together with (5.3.6a) we obtain

V J(Xi(n))$P£(n)E[s (n) IF] >-, a.s.
n=l

i

Now use the fact (Lemma 5.2.1 (ii), inequality (5.2.10)) that (PZ(n)>n>O, for

any computing processor i for component Z. This implies that

V VJ(xl(n))E[s nln - , a.s. )

and establishes part (c) of the theorem.

Lemma 5.3.1: Let X(n), Z(n) be non-negative stochastic processes (with finite

expectation) adapted to {F0} and such that
n

E[X(n+l)IF°I< X(n) + Z(n), (5.3.22)

Z E[Z(n)]< (5.3.23)
n=l

Then X(n) converges almost surely, as n-0.
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1F2Proof of Lemma 5.3.1: By the monotone convergence theorem and (5.3.23) it

CO

follows that Z < , almost surely. Then, Lemma 5.3.1 becomes the same
n

n=I

as Lemma 4.C.1 in [Ljung and Soderstrom, 1983, p.453].0

Now let A be the constant in the right hand side of (5.3.14) and let

Z(n) = 2YE dnkb2(k)IFO (5.3.24)m lk=l

Then, Z(n)> 0 and by (5.3.15)

n

0 E[Z(n)]< A n dn-kE[G(k)] (5.3.25)
k=l

Therefore,

CID CO n -
SE[Z(nfl< A d' d EIG(k)) 0

n=l n=l k=l
)" "OD

A 1 F[S (k) ]<- (5.3.26) "

1-d k1

where the last inequality follows from (5.3.19). Therefore, Z(n) satisfies

(5.3.23). We take the conditional expectation of (5.3.14), given F° . Note that
n

J(y(n)) is F°-measurable and that E[G(n)IF°I> 0. Therefore Lemma 5.3.1 applies
n nS

and J(y(n)) converges almost surely.

Using Assumption 5.3.4 once more, together with (5.3.19),

SE [jbA E[G(k) ]<' (5.3.27)
k=l -

m *"
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which implies that b(k) converges to zero, almost surely. Recall (5.3.9) - g

to conclude that y(n)-x (n) converges to zero, almost surely. Also, by

2
squaring (5.3.9), taking expectations and using the fact that E(b (k)]2] "

converges to zero, we conclude that Ily(n)-x i (n)II] also converges to zero,

and this proves part (b) of the Theorem.

Lemma 5.3.2: Under Assumption 5.3.2, there exists some A>O such that

IIVJ(x)I2 < AJ(x), VxeH . (5.3.28)

Proof: By the definition of the induced norm on H*

IIVj(x)Il = sup IVJcx)yl
yeH I I 1
Y#O

Therefore, for any E>0, there exists some yeH such that

VJ(x)y >(l-E) IIVJ(x)ll I I YI. Moreover y can be scaled so that

IIylI II[VJ(x) l. Then, a second order expansion for J yields 0

(l-E) I2 1 IIVJ)II2  11J(x-y)< J(x)+ IVJ(x) 1 (5.3.29) j
Taking C< 1- and using the assumption that J is a nonnegative function,

2

(5.3.28) follows.o

Since J(y(n)) converges, it is bounded; hence VJ(y(n)) is also bounded, by

i
(5.3.28). We then use the fact that y(n)-x (n) converges to zero, to concludes

i
that J(x (n))-J(y(n)) also converges to zero. This proves part (a) and concludes

the proof of the Theorem..
0

.1
S.
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Remark: S

The choice of y* in our proof is not tight enough. A tighter value may

be obtained in terms of the data of the problem (that is, in terms of M,L,K,K

0

etc.) by tracing back the inequalities which led to (5.3.17). Finally, the

conclusions of the Theorem remain true, with the same y*, even if we replace

the condition y0<Y* by the weaker requirement lim sup y (n)<Y*.
n0

Decreasing Step-Size Algorithms

We now introduce a different set of assumptions. We allow the magnitude
ii

of the updates s (n) to remain nonzero, even if VJ(x (n)) is zero (Examples

III and IV of Section 5.2). Such situations are common in stochastic

approximation algorithms or in system identification applications. Since the

noise is persistent, the algorithm can be made convergent only by letting the

step-size y (n) decrease to zero. The choice y (n) = 1/n is most commonly used
yi

and in the sequel we will assume that (n) decreases at least as fast as 1/n.

Note that even if each processor selects its step-size according to a local clock

or counter (which may be itself random), as long as these clocks do not operate

iin different time scales, we may assume that y (n)< A/n, for all i and for some

A>O.

Since the step-size is decreasing, the algorithm becomes progressively

slower as n-. This allows us to let the communications process become

4 progressively slower as well, provided that it remains fast enough, when

compared with the natural time scale of the algorithm, the latter being deter-

mined by the rate of decrease of the step-size. Such a possibility is captured

by Assumption 5.2.3.
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The following assumption, intended to replace Assumption 5.3.4, allows

the noise to be persistent. Similarly with Assumption 5.3.4, it could be

more naturally stated in terms of conditional expectations, but such a

stronger version turns out to be unnecessary.

Assumption 5.3.5: For some K ,K K2>0
0

i 2
E[lIs (n)I 2]< -K E[V J(xi(n))s (n) + KiE[T(xi(n)) + K

0 9o 1  2 (5.3.30)

In fact we will only use the following immediate consequence of

(5.3.30) and Lemma 5.2.1 (iii). (Compare with inequality (5.3.5).)

E[ Isi(n) 2 <- E[VJ(()s(n)]+ K E [ J( x (n))] + K2  (5.3.31)

012

S

Theorem 5.3.2: Let Assumptions 5.2.1, 5.2.3, 5.2.4 hold, with probability 1,

and assume that the constants ,BIct,a involved in them are deterministic.

Let also Assumptions 5.3.1, 5.3.2, 5.3.3, 5.3.5 hold. Assume that, for some
* 0 i S

K >0 Y (n)< K 3/n, Vni. Then,

i
a) J(x (nl), i=l,2,...,M, as well as J(y(n)) converge almost

surely, and to the same limit.

i j i
b) lim (x1(n)-x (n)) = lim (x (n)-y(n))=0, Vi,j,

n- n-)," -w

almost surely and in the mean square.

c) The expression

C M
yi(n)VJ(xi(n))E[s'(n)jF n] (5.3.32)

n1l i=l n"

is finite, almost surely. Its expectation is also finite.

,,,""
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For the proof of Theorem 5.3.2, we will start with an auxiliary

Lemma. In this Lemma we will bound certain infinite series by correspond-

ing infinite integrals. This is justified as long as the integrand cannot change

by more than a constant factor between any two consecutive integer points.

n _kFor notational convenience, we use c(nlk) to denote d ,where d and & are

as in Lemma 5.2.1 (iv).

Lemma 5.3.3: The following hold:

i) 1 1c(nk)< (5.3.33)2n k
.k l n=k

(ii) Let a>O. Then, there exists some A>O such that

n nI -+ c (nlk)< An- , n>l (5.3.34)
k=l k2+

n n

(iii) lim n (nlk) = lim c(nk)= (5.3.35)
n-wn kkl k2 k( 

.

00

(iv) lim !. c(nlk)=0 . (5.3.36)

k-Ko n=k n

Proof of Lemma 5.3.3: Let t =y; then t=yl/ and dt=(/6)y dy. Notice

that the left hand side of (5.3.34) is bounded by

*" 0

* Si

4 0,
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n n6
1 n -t r 1 n -y-

An d2+ d dt = An (2+ d y/6 dy=

n 1

6

=Anf Y 6  d dy< An

which proves part (ii); part (iii) follows immediately, by letting ct=O in

(5.3.34). For part (i), we notice that the left hand side of (5.3.33) is

bounded by

-- I-I c(nlk)< A I. n- <C,

n=l k=l k n=l

where the first inequality follows from (5.3.34) with (1=0. Finally, part (iv)

is an immediate consequence of part (i).o 

Proof of Theorem 5.3.2: Using the same arguments as in the proof of Theorem

5.3.1, we may assume, without loss of generality, that x (1)=0 and that 0
i "

(n)=l/n, Vi,n. (Otherwise we could define i (n) = nY (n)s i(n).) Moreover,

0we define the a-field F as in that proof and note that (5.3.7) is again valid.
n

We still use c(njk) to denote dn -  We define again b(n), G (n), G(n)

by (5.3.8), (5.3.12), (5.3.13), respectively, as in the proof of Theorem 5.3.1.

Also, let

n-l S
1 + - c(nlm), n=k,
2 '- n m

n m=l

1 1 c(nlk), n>k, (5.3.37)
n k-

0, n<k •
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By replicating the steps leading to inequality (5.3.14) in the proof of

Theorem 5.3.1 and using the definition (5.3.37) we obtain, for some A>0,

n
J(y(n+l))< J(y(n)) -G(n) + A I 0(nlk)b2(k) Vn (5.3.38)

k=l

Taking expectations in (5.3.38), we have

n 2"
E[J(y(n+l))]< E[J(y(n)1- -E[G(n)] + A I *(njk)E[b (k)], Vn • (5.3.39)-- n k=l

We would like to use Assumption 5.3.5 to bound E[b 2(k)]. However, these

bounds are in terms of E[J(x (n))], while (5.3.39) involves E[J(y(n))].

Nevertheless, we have:

Lemma 5.3.4: There is a constant A>0 such that, for all n>l,

n 2l
E[b 2(n)]< A c n (nlk)E[b 2(k)] + AE[G(n)] + AE[J(y(n))] + A (5.3.40)

k=l k

Proof of Lemma 5.3.4: Assumption 5.3.5 may be written as

2 M
E[b (n)]< AE[J(y(n))] + AE[G(n)] + A + A E[J(x (n))-J(y(n))], (5.3.41)

i=l -" :1

and we need to bound the last term.

Using Lemma 5.3.2 and a second order series expansion for J we obtain:

2S
J(x1 (n))-J(Y(n)) <  VJ(y(n))Jl lxi (n ) - y(n) )j + Allxi(n)-y(n)jj <

< 1 IIVJ(y(n))I 12 + AIIxi(n)-y(n)II 2 < AJ(y(n)) + AI!x i (n)-y(n)Ii2  (5.3.42)
2S

S
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Similarly with (5.3.9), we have

n-i

ly~n)-x i (n)1 <l _.A n- 1 ocnlk~b(k) (5.3.43)
k=l

We now use (5.3.43) to bound the last term in (5.3.42). We obtain

2 
" 

-

I xi(n)-y(n)112 < A I c(nlk)b(k) <
k=l

n-i 2 n-i
< An c (nik b2  1 c(nlk)b

Ak=l k 2-- (k) < An kZ k 2 b(k) (5.3.44)

We now take expectations in (5.3.42) and use (5.3.44) to recover (5.3.40).

This completes the proof of Lemma 5.3.4.03-

2 2Inequality (5.3.40) bounds b (n)" in terms of past values of b (k). We

may recursively eliminate such past values and obtain: 0

Lemma 5.3.5: There exists a finite constant A and a kernel g(n,k) such that

E[b 2(n)]<A g(n,k)[E[G(k)] + E[J(y(k)]+l] (5.3.45)
k=l

n

Z g(n,k)< A, yn , (5.3.46)

k=l

g(n,k)< A, Vk . (5.3.47)

n=k

* 0i- - ,  l

; - • ... ; :;i ., .. ... .. ;: ; -- , . -- , .. . . . .-. . . . . .-_ .- _ . ..
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Proof of Lemma 5.3.5: Consider the linear (time-varying) system

n-i
n

X n A 1 k2 c(nlk)Xk + Un  (5.3.48)
k=l k

where A is the constant in (5.3.40). By linearity, there exists a kernel

g(n,k) such that

n
X = g(n,klU k  (5.3.49)
nk

k=l

If we let

U A[E(G(n)] + E[J(y(n))]+ (5.3.50)Un

2
and use (5.3.40) we obtain (by an easy induction) E[b (n)]< Xn , Vn, whichn

is essentially (5.3.45). O

In order to prove (5.3.46), we must show that the step response of

(5.3.48) is bounded. That is, we assume U =1, Vn, and we must show that the
n

resulting sequence {X } is bounded. Let us define a sequence {Bn by BI=l and,
nn

for n>l,

n-i
B = max B 1'lA [ c(nlk)B n+ 1 . (5.3.51) -

k=l k

It follows from (5.3.48), with U =1, that
n

B > max Xk  (5.3.52)
k<n -

So, it is sufficient to show that {B_}is a bounded sequence. But this follows

easily from (5.3.51) and (5.3.34), with a=0.

LI2-- I

4 S .. - -- _ . . ._ . .''. ..,. _..... j i- , . 2 , . ,
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'.

Now, in order to show that (5.3.47) holds, we need to show that the =

response of the system (5.3.48) to an impulse at time k is summable and
0

that the sum is bounded by a constant which is independent of k . So, we

assume that Uk0=, Uk=0, Vk k0  and we need to show

0

X < A, (5.3.53)
n=k 0  n

where A does not depend on k . Since the step response of (5.3.48) has been

shown to be bounded, the impulse responses must be uniformly bounded; that is,

X < A, Vn > k0  (5.3.54)

where Xn is the response to an impulse at time k and A is independent of k
n0 0'

We will show by induction that for every E>0 and every integer m>0, there exists S

a constant A, independent of k0, such that

-m6 n A +_m
X n n 2 c(nk Vn > k (5.3.55)

0n- 0- .

Let us fix some E>0. Clearly, (5.3.55) is satisfied for m=0, due to (5.3.54).

Assume it is true for some arbitrary integer m>0. We then use (5.3.55) in*I

(5.3.48) (recall that Uk=1, Uk0, Vk k and XklX =0, Vk<k0) to obtain,
k0 k= 0 k0k 0 0

for n>k0
*n-1 -m6+ kI e 0 l 0

X < A n c (nik) [Ak + A c c(kkn k02 k=k +1 kk
0 0 0

* ,,

* . . . .,5
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Using (5.3.34), with c--m6,

n-i - 6 A-(m+1)6
c0 ( )c(n k)k m  <An

k=k 0+1 k

where A is independent of k0. Also note that c(nlk)c(kik0) = c(nlk 0) and that

n-i kl+Em l+£m n-i 1 l+C(m+l)
I - c(nlk) 2 c(klk 0 )< 2 c(nlk0 ) I -<A 2 c(nk

k=ko+l k 0 k 2c k=ko+1 k kO 20
0 0 000

(5.3.56)

where A depends on C but not on k0 . (The last inequality follows from the
0*

fact that for any 6>0, there existAA, such that 1 k- A logn < An .)
k=l

This shows that (5.3.55) is also valid for m+l, and completes the induction.
-m6

Taking m large enough so that m6>1, the term An in (5.3.55) becomes

summable, and the sum is independent of k It remains to show the summability
0'

of the last term in (5.3.55). Proceeding as in the proof of Lemma 5.3.3 and

letting 0= me, we have:

L 0000+E 0 1+E 660 t6-k .

n 2 0 Ink nc c(nlk 0 )< A t dt _" "

nLk0 k0 t=k0  k0

00 2+, y-k6 2+e -6 e -6
A - yd dy < - k -Ak 0 (5.3.57)

~~~ '_ 20 00
k J6 00 yk 0

Since e was arbitrary, it may be chosen small enough so that %0fmE<6. Then,

the right hand side of (5.3.57) converges to zero, as k0 -, and (a fortiori)

it is bounded by a constant independent of k0 . This concludes the proof of

Lenma 5.3.5.3

A

.-. .

* . .~i . ::: . ! i. . - i . . .**\*. * . .* .
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we may now use the bounds given by Leimma 5.3.5 in (5.3.39) to obtain,

after some rearrangement,

EL(Y(nl)] _E~~n) -E[ ) + A q(n,m) [E[G(m)]+E[J(y(m))]+l] -

m1 (5.3.58)

where

n

q(n,m) I flpn~k)g(k,m) .(5.3.59)

k--m

Lemma 5.3.6:

00 n

S Xq(n,k)<-, (5.3.60)
n1l k1l

k- n~k

* Proof of Lemma 5.3.6: Using the definition of (njm) and (5.3.46), we obtain

after some rearrangement

00 n 00 n .-

X q(n,k)< A 0 (nlm)<o (5.3.62)
n1- k1l n=1 m7-1

*where the last inequality follows from (5.3.33), (5.3.37). Similarly, using

(5.3.47)

co 00 ~n000
k I q(n,k) =k I I (n~m)g(m~k) =k I g(m,k) I *(nlm)<

*n=k n=k mr-k m--k n--m

<Ak sup (njm)< A sup ~+~ k ,c(mIt) + k ~~m
m.k n-m. m>k m 2 t1WT nm+1 m

<A Asup m 7-l (. + Asup 1 ~i)(5.3.63)
-k m>k ZL-l m>k n-m+l
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The second and the third expression in the right hand side of (5.3.63) are

easily seen to converge to zero, as k- , because of (5.3.35) and (5.3.36),

respectively. This concludes the proof of Lemma 5.3.6.03

Let us define

n 1
R = A I q(n,m)E[G(m)] - -E[G(n)], (5.3.64)
n n

m=l

and note that (5.3.58) may be written as

n
E[J(y(n+l))]< E[J(y(n))] + R + A 7 q(n,m)[E[J(y(m))]+l] (5.3.65)-- n m=l

We also define P by Pl=E[J(y(1))]

n
A I q(n,m)[P +1] (5.3.66)P 1 l=Pn + R+ (53.6

m--l

and note that P >E[J(y(n))], Vn. By linearity, there exists a kernel V(n,k)n- ""

such that

n k i
P = V(n,k+l) +A I q(k,m + V(n,.)P (5.3.67)

k=l m-l

Clearly, V(n,k)> 1, vn,k. Moreover, inequality (5.3.60) implies

+ I. q(n ,m] <00

n=l + m=l

which leads to the conclusion that, for some constant V*, V'n,k)<V*, Vn,k.

Using Lemma 5.3.6,

n k 0 k
V(n,k+l) q(k,m)_<V* q(k,m)< A<- (5.3.68)

k=l m=l k=1 m=I .

Using the definition of R , we obtain _
n n n

V(n,k+l)Rk< I V*A I q(m,k)- ]E[G(k)] (5.3.69)
.

-.
l 

-w. 
k

* .* ... l* . k . *m-
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n
Lemma 5.3.6 implies that V*A I q(m,k)- -becomes negative for large enough k,-

m=k k
n

which shows that I V(n,k+l)Rk is bounded above by some constant A for all n.
k=l

So, we may conclude from (5.3.67) that the sequence {P } is bounded. Hence, for

some A>0,

E(J(y(n))I< A, Vn (5.3.70)

From (5.3.67), (5.3.68) we conclude that

n

whichin shwIta V(n,k+l)Rk> isbuddaoe(ys5 osan o l .3.1

n-k. k=l

Using (5.3.69) and Lemma 5.3.6 again, we obtain
nn

E((n) ) ]<n . (5.3.73)

kkl___

Using Lhema. .3 (.n serncye th (5.58a ), w b n
I

n,'

inf (nkl)b (k-) (5.3.73)
n k=l :1

Using Lemma 5.3.6 and imil5.3 and i (5.3., we ob tainI0I

OD CO

EI . ) A E[Gm)E[~k)]< .m)],] (5.3.74) "

kn~l

Now precal inqalt (5.338) Takin codisoa cometeds weoti

n nI
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and using Lemma 5.3.1, it follows that J(y(n)) converges almost surely.

We now turn to the proof of part (b) of the Theorem. Let

B n= max max E[Iis i(k)1 l2, (5.3.76)
i l<k<n

D = max E[IIx (n)-y(n) 11]. (5.3.77)n

Inequality (5.3.44) implies that

Dn+ 1 < (n)B n  (5.3.78)

where P(n) is a sequence which converges to zero, by (5.3.35). Moreover,

using (5.3.30),

i i2i
E[IIs i (n)I 2]< AE[J(x (n ) ) ] -E[2AVJ(x (n))- s (n))] + A <

1 2 i 2 i 2]
< AE[J(x (n))] + 4A E[IIVJ(x (n))1Il] + 1-[-Isi(n) l + A <

i 1 si 2

<AE[J(x (n))] + - E[IIs(n)II ] + A, (5.3.79)
4

where the last inequality follows from Lemma 5.3.2. This finally implies that

E[I lsi (n)I 2]< AE[J(xl(n))] + A. (5.3.80)

Taking expectations in (5.3.42) we have

E[J(xl(n))]< AE[J(y(n))] + AD . (5.3.81)
n

Inequalities (5.3.80) and (5.3.81) imply

E[I si(n) 2<AE[J(y(n))] + AD + A (5.3.82)

E.I. .AE J y n ) n.. i . . ........ .... ....... .........:
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and

B < AQ + Amax D k (5.3.83)
k<nk

where Q=1+ sup E[J(y(n))]. Combining (5.3.78) and (5.3.83), we have
n>l

D < (n) (AQ+Amax D )(5.3.84)
n+l - knk

and since a(n) converges to zero, so does D .This proves that xi (n)-y(n)

converges to zero in the mean square.

As a corollary to the preceding, we obtain

* 20
sup E~b (n)]<- (5.3.85)
n

* Let

C b b(i) , k>l .(5.3.86)

k16
k /<i< (k+l)

*Using the fact that there exists an A such that (k+l)l/-k 6 < Ak ,Vk, we

obtain from (5.3.86)

2

SE[C < [1 sup E~b 2(n)]1<

i<(k+1

S ~~1 1/6 k1/6 2 * (12/6)-2 . (387
< A I [(k+l) ]k < A k 05..7

k=l k 2/6  k-l k 2/6

2
It follows that Ck converges to zero, almost surely. Consequently, so does

.0 k

CK and d nkC as well. Let N denote the largest integer such that N<n 6and
k=l k

use (5.3.43) to obtain
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S(n ) - y (n ) < c(njk)b(k)< A d/6 6 d- b(i) <

k=l 1<k<n -1 k <i< (k+l)

< A N - (k + l )  1 N-kc"
<A 4-b(i)< A (5.3.88)E 6 161/6 - "
<k<n -1 k <i< (k+l).-

As n converges to infinity, so does N and, by the above discussion, x (n)-y(n)

converges to zero, as n+-. Consequently, x I(n)-xJ(n) also converges to zero,

for any i,j, completing the proof of part (b).

Finally, since J(y(n)) converges and x (n)-y(n) converges to zero, part (a)

of the theorem follows, as in the proof of Theorem 5.3.1.0

We continue with a corollary which shows.that, under reasonable conditions,

convergence to a stationary point or a global optimum may be guaranteed. We only S

need to assume that away from stationary points some processor will make a positive

improvement in the cost function. Naturally, we only require the processors to

make positive improvements at times that they are not idle, that is at times tET .

We first need some technical background: an integer-valued random variable

t is called a "stopping time" (with respect to {F n}) if and only if the event

{t<n} belongs to F , for every n. Given a stopping time t, we define F to be
n t

the a-field generated by those events AeF such that An {t<n} belongs to F , for- n

every n. Intuitively, F describes all events which have occurred up to the random
t

time t.

Corollary 5.3.1: Suppose that for some K4 >0, y (n)>K4/n, Vn,i. Assume that [

is finite dimensional, J has compact level sets and that there exist continuous

ifunctions g£: H [0, ) such that

• . ..,
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V J(xI(t))E[SI(t) ]F ]<-gI(xI(t)), (5.3.89)
tS

for every stopping time t satisfying teT , with probability 1.

M L
We define g: H-[0,) by g(x) I g I(x) and we assume that any point

i=l £=1

xeH satisfying g(x)=0 is a stationary point of J. Finally, suppose that the " -

i
difference between consecutive elements of T Zis bounded, for any i,Z such that

T91#. Then,

a) Under the Assumptions of either Theorem 5.3.1 or 5.3.2,

liminf IIVJ(xi (n))11=0, Vi, a.s. (5.3.90)
n-

b) Under the Assumptions of Theorem 5.3.1 and if (for some E>0) i(n)>E, Vi,n,

we have

lir VJ(x (nll=O , Vi, a.s. (5.3.91)
n-x'O

and any limit point of {x (n)} is a stationary point of J.

c) Under the Assumptions of either Theorem 5.3.1 or 5.3.2 and if every point

satisfying g(x)=0 is a minimizing point of J (this is implicitly assuming that

all stationary points of J are minima), then

lim J(x (n)) = inf J(x) (5.3.92)
n-KO xeH•

Proof of Corollary 5.3.1: From part (c) of either Theorem 5.3.1 or 5.3.2 and

(5.3.89) we obtain

M L i ii
I Il i (n)g'(x(n))<-, a.s. (5.3.93)
.-l 4=I neT£

6. SI
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Because of our assumption on the sets T., it follows that there exists a positive -4

integer c such that, for any i,k,m, the interval {cm+l,cm+2,...,c(m+l)} contains

at least one element of TI. Let us choose sequences of such elements denoted
i *

by t ,m . By (5.3.93), we have

M L co i  i

i=l Z=l m=l z g MtZ'm

Now notice that, for some constant K 5>0,

K K K

Y (t c )> > >i,9,m . (5.3.95),om -t i -- c(m+l) - M '
t£m

Hence, (5.3.94) yields

00 M L

I L I I((tm< a.s. (5.3.96)
m=l i=l Z=l z'

From either Theorem 5.3.1 or 5.3.2 and its proof we obtain

lim (xI (n)-y(n)) = lim (y(n+l)-y(n))=0 which implies that 4
n - = n-n

lim (X i(ti m)-y(t 1 ~))=0' )ji'z (5.3.97)

Since J has compact level sets and J(y(n)) converges, the sequence {y(n)} is

bounded. We therefore need to consider the functions g£ only on a compact set

on which they are uniformly continuous. Therefore,

lilra (g1 (xi (t , m ) ) - g i ( y ( t l1 m ) ) ) = o , VfiZ (5.3.98)

• i

Clearly, we can choose these sequences so that each t i is a stopping time.
Z"m
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By combining (5.3.96) and (5.3.98) we obtain

1I

M L
liminf I gj t i 1 )= (5.3.99)

a) By (5.3.99), there must be some subsequence of {tI along whichl,m
1-

g(y(tm)) converges to zero. Tet y* be a limit point of the corresponding
l'm

subsequence of {y(t )} " By continuity, g(y* 0 and by assumption, y* must be
l'M

i 1
a stationary point of J, so VJ(y*)=0. Moreover, x (t ) also converges to y*

l,m

along the same subsequence. By continuity of VJ, (5.3.90) follows.

b) In this case, (5.3.94) implies

M L
lim g (x (tm))=0, a.s. (5.3.100)
m- =j =i 

O

and the rest of the proof is the same as for part (a), except that we do not

need to restrict ourselves to a convergent subsequence.

c) From part (a) we conclude that some subsequence of {y(t I )} converges to
I,m

some y* for which g(y*)=0. Consequently, y* minimizes J. Using the continuity

of J,

liminf J(y(n))< liminf J(y(t l,))< J(y*) = inf J(x)
Sn--  xeH

On the other hand, J(y(n)) converges (part (a) of either Theorem 5.3.1 or 5.3.2)

which shows that (5.3.92) holds. I

*

* S
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We now discuss the above corollary and apply it to the examples of

iSection 5.2. Notice first that the assumption on T states that, for each

icomponent Z, the time between successive computations of s is bounded, for any

computing processor i for that component. Such a condition will be always met in

practice. The assumption y (n)> K /n may be enforced without the processors
-3

having access to a global clock. For example, apart from the trivial case of

i i 1constant step-size, we may let y (n)=l/ti , where t is the number of times,n n

before time n, that processor i has performed a computation.

i
For Examples I and III, (5.3.89) holds with g (x) a constant multiple of

I i x 2 i
IVJ(x) 12; for Examples II and IV, it holds with g (x) a constant multiple

of IjVJ(x) II2  We may conclude that Corollary 5.3.1 applies and proves convergence

for Examples I-IV.

5.4 DECENTRALIZED STOCHASTIC ALGORITHMS WITH CORRELATED NOISE

We have considered thus far stochastic algorithms with decreasing step-size,

under the crucial descent Assumption 5.3.3. However, there is a large number of

applications of stochastic algorithms in which such an assumption is violated [Ljung,

1977a]. Many such applications are related to identification of ARMAX models.

or adaptive control of stochastic systems [Ljung, 1977b]. Martingale theory is

not directly applicable to the study of such algorithms, but results have been

obtained via other approaches. Ljung (1977a] has shown that convergence may be

studied in terms of the stability properties of an autonomous, deterministic,

ordinary differential equation (ODE). (Hence, this method of analysis has been

called the "ODE approach".) The proof exploits the fact that as the step-size

°
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becomes smaller, the algorithm evolves in a progressively slower time scale,

while the dynamics of the underlying uncertainties evolve in a constant time

scale. Hence, we have -asymptotically - a separation of time scales; the sto-

chastic effects may be averaged out and we are left with a deterministic ordinary .

differential equation. Similar results have been obtained by Kushner and Clark

[1978] and have been further developed and unified by Metivier and Priouret [19841.

The main deficiency of the ODE approach is that convergence may be proved

only under the assumption that the algorithm returns infinitely often to a

bounded region. This assumption needs to be verified by means of different ap-

proaches, or it may have to be enforced directly by modifying the algorithm, e.g.

by projecting the relevant variables back into a bounded region, whenever the

algorithm moves away from this region. This may create new problems because the

bounded region into which we project should contain the desired point of convergence S

and, typically, this point is itself unknown.

In Section 5.3 we have shown that the natural decentralized versions of

descent-type stochastic algorithms have essentially the same convergence properties

as their centralized counterparts. We will show below that the same is true,

without the descent assumption. In particular, we will show that the main conclusions__*1

of the ODE approach still hold (appropriately modified). Of course, since a

"returning" assumption is essen' al for proving convergence of centralized algo-

rithms, such a condition has to be assumed for decentralized algorithms as well.

We adopt again the model of computation (and the corresponding notation) of

Section 5.2. We now introduce some assumptions, which will be discussed later. I
In particular, we assume the following:

* S

*1!
S-

• • ,.- .-. , • . .i " " . , .2
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(i) H is a finite dimensional Euclidean space.

(ii) lim (P (nik) exists for all i,j,k and is independent of i.n- °

(See Lemma 5.2.1 for some sufficient conditions for this 1
assumption to hold)..

(iii) Communication Delays are zero. For future reference, we collect

here the relevant equations from Section 5.2. Namely, for any

i, n>m>l we have:

x (n+l) = D"(n+lin-l)x (n) + y (n)si(n) (5.4.1)
j=l

4 x I (n+l) = ij (n+llm-l)x j (m)+ ID iJ(n+l k)-y(k)sJ(k (5.4.2) 4

j II =JIJ) k=m (542

M
y(n) = . 0j (n-l)x (n), (5.4.3)

M•

y(n+l) = y(n) + yi(n) I $ (n)s (n) (5.4.4)

j=l
Also,

Assumption 5.4.1: y (n) = 1/n, vn,i.

Assumption 5.4.2: There exists a stochastic process {P(n)}, taking values in

a Euclidean space S, defined on some probability space (Q,F,P), and a set of

i:
functions Q :INxHxS + H, i=l,...,M, such that

i i x .
s (n) = Q (n,x (n),O(n)), Vi,n . (5.4.5)

Moreover, there exist functions K : Sx R + R, K 2:H+R and K : R R such that

IQ'i(n,x, )-Qi(n,x', )II <K 1 ( 1,C)Ijx-x'jI, Vn,o,i (5.4.6)

* "6

* 6
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whenever I x I<C, Ijx'jI< C; without loss of generality we assume that

K1 (-,-) is increasing in C, for each . Also, for some NEIN,

SI1Qi(n,x,4) - Q (n,x,c')Il <K 2 (c)(I p[ +

vn~x,,4' ,(5.4.7)

and

S (,c) ( ' , C )  < K3 )(II II + , ',c (5.4.8)

Assumption 5.4.3: The process {W(n)} is generated by

0(0) = e(0) (5.4.9)
*I

0(n+l) = A(n)O(n) + e(n), n>0 (5.4.10)

where {e(n)} is a sequence of independent random vectors. Moreover, there

exist some c>0, XE[0,1) such that

m-l
H 11 A(k)II < cXmn, m>n . (5.4.11)
k=n

Assumption 5.4.4: sup E[ Ie(n)IIP]<C, p>1 . (5.4.12)
n

Note that (5.4.10),(5.4.11),(5.4.12) imply

sup E[(II(n)I P]<-, vp>l. (5.4.13)

n

Let us define

Si(n,x) = E[Qi (n,x,O(n))] (5.4.14)

M
f(n,x) = t 'i(n)f1(n,x) (5.4.15)

i=1

34: + " - + I *++ . --- . - .' I _ . --- - - --+ I"+ : . ... - . ------ I -"+. . .U' .J h
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For any A>O, let m(n,A) be a sequence of integers such that

m(n,A)-l m(n,A)
11 -,(5.4.16)

=ni=n

and note that for large n,

AWZn m(n,a) (5.4.17)n
A S

which implies that m(n,A) is approximately equal to ne A

Assumption 5.4.5: There exists a twice continuously differentiable function

V: H -[0,-) with a unique global minimum x* satisfying

aV (x) 0, x q x* (5.4.18)

x

V(x*) = 0, lim V(x) = (5.4.19)

IxI-+

and such that for some A >0, and for any A>0, xeH,

[m nA)2
lim sup -f(k,x) - <-Alj - (x)Ij (5.4.20)

nk=n

Assumption 5.4.6: For some A2>0 and for any A>0, xeH,

lim sup max f(t,x) < A2 Rx (x) IIA, (5.4.21) .
n-* n<k<m(n,A) t=n

k M.
lim sup max D"(kIt) fJ (t,x)I<A2 - (x) A. (5.4.22)

n-C n<k<m(n,A) t n j .
1 1

..x

i<i<M

* S
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Assumption 5.4.7: There exist some A 0>0, de[0,1) such that

lir sup max ID (kin) - (J (n)II<- Vij (5.4.23)
n- k>m(n,A

Remarks and Interpretation of the Assumptions

1. The assumption that communication delays are zero is not essential for

the result to be proved. Similar results may be obtained under the assumption

that communication delays are bounded, provided that the returning condition

(see the statement of Theorem 5.4.1) is slightly strengthened to require that at

the times nk the magnitude of state x (n) of each processor, as well as of any

message that has been transmitted but not yet received are bounded by the constant C.

2. Assumption 5.4.1 may be generalized to allow for a larger class of

sequences {y(k)} satisfying 1-y(k) = , -y(k)<-, for some p>l (see Ljung -

k=l k=l

[1977a]), including choices where processors need not to have access to a global

clock. Nevertheless, the choice {l/k} is representative enough and simplifies

notation.

3. Assumption 5.4.2 states that the updates s (n) are a function of the
i

current state vector x (n) and an underlying random process {(n)}, not

necessarily white. Inequalities (5.4.6), (5.4.7),(5.4.8) may be easily checked
i :i

if Q is known. They effectively require that Q is twice continuously differen-

tiable and that the derivatives (viewed as functions of ) increase slower than

some polynomial.

4. Assumption 5.4.3 defines a mDdel for the underlying stochastic process

{O(n)}. While this structure is convenient, it is far from necessary. In fact

any non-linear model for { (n)} would still lead to the same results, provided

S-... .• "
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that the dependence of 0(n) on 0(k) decreases "fast enough", as n-k increases.

Assumptions 5.4.3 and 5.4.4 are only used to prove the "averaging" Lemma 5.4.3.

Consequently, our results remain valid whenever the conclusions of Lemma 5.4.3

can be shown to be true, possibly using different means.

5. The main difference of our assumptions from those of Ljung [1977a] is

that we do not allow any feedback from the algorithm to influence the evolution

of the process {P(n)}. For this reason, the Theorem that follows is not

applicable to algorithms for adaptive control, nor to certain identification

algorithms. More general models, allowing feedback, are considered later.

6. Assumption 5.4.5 guarantees that the direction of updates is a descent

direction with respect to the function V. A simpler version of Assumption

5.4.5 would be to require

f(k,x) 2 (x) < -A IIj-- (x)11 , Vk,x, (5.4.24)

or the even stronger version

f (k,x) -.L < -Alj Cx)! , vk,x,i . (5.4.25)

Our version (5.4.20) has the following advantages over (5.4.24) or (5.4.25):

a) We do not require the direction f i(k,x) of update of eaL . processor to S
M i "

be a descent direction. Conditions are only placed on f(k,x) = &i(k)f (k,x)
i=1

which is in a sense the total direction in which the processors (viewed as a whole)

update.

6 t

%I
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o 0

m (n,A)
b) Our condition in on f(k,x) which is an average direction ofki

k=n

update over some time interval, rather than f(k,x) which is the direction of

update at a single time instance. In terms of applications, Assumption 5.4.5 I
has the advantage that it allows f(k,x) to be zero at some times. Thus, we do

not require the processors to obtain measurements or perform computations at

each time instance. Rather, we put a constraint on the average amount of com-

putations they will perform over some time interval. S

7. Assumption 5.4.5 is much weaker than the pseudogradient Assumption

3V
5.3.3. This is because the inequality f (k,x) - (x) < 0, Vx, does not

imply, in general,

E[Q (k,xi(n),O(x))flP(n-l),x (n)] 2- (x (n))< 0

when the process {0(n)} is non-white.

8. Inequality (5.4.20) also implies (using the Schwartz inequality)

that

m(n,A) 1

lim inf k f(kx) > A a x (5.4.26)
n- 1 k=n 1 A 2vw l

9. Assumption 5.4.6 requires that the magnitude of the expected updates 40

is not too big, compared with 1 1V (x) I. It is satisfied, in particular, if,

for some A

llf i (t,x)l l<  AllIT (x)lI, Vx,t,i, (5.4.27)

but also covers a few more general cases (see Remark 6).

0 •=
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10. Note that if si(n) is bounded by some constant A, for each i,n, the

i
vector x will move by an amount of the order of A0 during the time interval

[n,m(n,A ). So, this time interval may be viewed as unit time in a time scale

naturally associated with the algorithm. Assumption 5.4.7 implies that the

disagreement between processors tends to decrease by a factor of d<l during such

a time unit. The above statement can be made precise as follows:

Let D(n) = max J xi(n)-xJ(n)II and suppose that si(k)=0, Vk>n, Vi. Then,
i,j

Assumption 5.4.7 implies that, for n large enough, D(m(n,A 0))< d - D(n+l). (A

proof may be easily obtained from (5.4.23) and Lemma 5.2.2 (vi)).

Natural conditions that guarantee that Assumption 5.4.7 holds may be

easily obtained, as in Lemma 5.2.1. Let us just point out here that for the

specialization case, Assumption 5.4.7 is satisfied if every processor communicates

to every other processor once during the time interval [n,m(n,A )]. Since
'0

A0
m(n,A ) ne , this allows the time between consecutive communications to increase

0

exponentially. So, for the time being, we allow the communication process to be S

even slower than that assumed for the purposes of Theorem 5.3.2.

We now proceed to the first result of this section:

S

Theorem 5.4.1: Let C<-. Let Assumptions 5.4.1-5.4.7 hold. Then, there exist

constants A*(C)> 0, d*(C)e[0,1) such that: if the constants 0, d of Assumption
00

5.4.7 satisfy A 0A*(C), d<d*(C), then the following is true:
0-

If for almost al± we 2 there exists a subsequence {n of the positive integers
k

such that

Hxink)lH< C, Vi,k (5.4.28)
S

S
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and if the point x* minimizing V satisfies

ix* I< C, (5.4.29)

then

lim x (n) = x*, Vi, almost surely. (5.4.30)

Remark: Later in this section we will indicate differences and similarities

with the results of Ljung, and how an ordinary differential equation might enter
0

the picture.

Notation: For convenience, we present here a list of some notation to be used

in the course of the proof. In particular, given some ne IN, yeH,

A>0, C>O, we let:

C(n) = max{jlyjJ, max{ljxi(n)jj}} (5.4.31) Sn~i
D(n) =max lix (n)-x (n)II (5.4.32)

i'j

P(n) Ily(n)--f I (5.4.33) 0

q(n,A,C) = [ 1 KI(O(k),C) (5.4.34)
k=n k

m(n,A) MF-(n,A,y) k [ D1 (k)[Qi(k,yM(k))-fi(k,-y)] (5.4.35) "

k=n i=l"..

C (n,Ay)= max Di(t)[Q (t,y4(t))-f (ty)] (5.4.36)n<k<m(n,A) t=n i=l

k M
E (nA,y)= max Max 01' l $(kIt)i n<k<m(n,A) t=n j=1

IQ (t,y,O(t) l-fj (t~y H]  (5.4.37)

S j - ,
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m(n,A) .
F(n, y) f (k,y) (5.4. 38)

k=n

FI(n,A, y) max -f(t, (5.4.39)
n<k<m(n,A) t=n

k M
F 2(n,A,y) = max max - D (1'(kIt) fJ(t,y) (5.4.40)

i n<k<m(n,A) t=n j=l

E(n,A,y) = 1l(n,A,y) + 62 (n,A,y) (5.4.41)

G(n,A,y) = (n,A,y) + F (n,A,y) + F2 (n,A,y) (5.4.42)

We also recall for future reference some elementary inequalities,

most of them consequences of Lemma 5.2.2:

I " j (n)-y(n) I L D(n) (5.4.43)

Mj
1I Z &D(k n-l)x (n)I < C(n) (5.4.44)

j=l

Iy(n) I I< C (n) (5.4.45)

[i (kln)_ 2 (kin) ]ajII< max Ialla < 2 max " a'' 11

j=l i ,i 2  i (5.4.46) 0

S [t13(kn)- 23(kn)]aJLI< 2Mc(kln) max lla'-a jj (5.4.47)
j=l i ,i2

where

c(kln) = max II JD ('In)-&j (n) I 1 (5.4.48)
i,j I

The proof of Theorem 5.4.3. proceeds through a sequence of Lemmas.

0

......................, • ..............
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Lemma 5.4.1: Let {R(k)} be a sequence of zero-mean random variables such

that E[R(k)R(j)]< AXIk - ',for some A>0, XE[0,1). Then for any A>0,

k

lim max 1 R(9) 0, almost surely (5.4.49)
n- n<k<m (n, A) -

Proof: The proof is essentially given by Ljung [1977a]: An ergodic theorem

of Cramer and Leadbetter implies that

n
lim 1- 1 R(k)=0, almost surely (5.4.50)
n - k=l

.4 Let

n ~ )(..1
k=l

Then,

z(n) = z(n-l) + L (R(n)-z(n-l)) (5.4.52)n

and, therefore,

max TR (Z) =
n<k<m(n,A) 1n

= max Iz (k) -z (n-l) + I - z (9-l)
n<k<m(n,A) Z=n Z

< (2+A) sup Iz(k)I (5.4.53)
k<n-l

which converges to zero by virture of (5.4.50).o
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Lemma 5.4.2: Let {R(kji); keIN, iEIN} be a double sequence of zero-mean

random variables such that
k4-k1

E[R(kjk 1)R(klk 2 )R(klk 3)R(kk 4 ) ]<AX 4 1 (5.4.54)

for some A>O, Xe[0,1), whenever kl<k 2<k 3<k . Fix some A>O and let

k
w(kn) = Rki), k>n (5.4.55)

I
i=n

u(n) = max lw(kln)l (5.41.56)
n<k<m (n ,A)

4 Then

lim u(n)=O, almost surely. (5.4.57)

gProof: Using (5.4.54) and (5.4.55),

4 24 k k k k k -k4244
E~w (kln)J<- _ _ z AX 4

n 4k k =k 2  k=k
1 2-'1 3= 2 4= 3

24A k k k2-k I  k k3-k 2  k k4-k 3

k42A ~<
n kl=n k2=k I  k3=k 2  k4=k 3

1 21 32l43

< -- -. G (5.4.58)

On the other hand, there exists some constant a such that (see.equation

(5.4.17))

m(n,A)< an (5.4.59)

4

....
L . . ,o.
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Therefore,

3E w 4(kln)]< 24Aot 1 > --'
-- 3 3A , n<k<m(n,A) (5.4.60)

and

0 m(n,A) (1 \3

E[W (kin)]< 24A (m(n,A)-n)
7. n~l k=n n=l n

• 300 24A0t 2 " [

'< <0] (5.4.61)
n=l n

Therefore,

m(n,A)
lim w (kln)=0, almost surely, (5.4.62)
n-*O k=n

- .which implies (5.4.57).(3

Lemma 5.4.3: Given C>0, there exist constants A', A(C) such that for any

yeH, (jyj j< C, and for any A>Q, the following are true, almost surely,

a) lim c(n,A,y)=O, (5.4.63)

b) lim sup q(n,A,c)< A(C)A, (5.4.64)

* n- 1

d) lim E (n,A,y)=0, (5.4.66)

e) lir sup G(n,A,y)< A'IIv- (y)IIA. (5.4.67) 0

* .6
..... ...- ,

WOW
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Proof: a) Note that 0<e(nA,y)< e (n,A,y) and for (5.4.63) it is sufficient

to prove (5.4.65).

b) By (5.4.34),

m(n,A)
q(n,A,c) = -E[KI(O(k),C)] +

k=n k-1

m(n,A) "-

+ [K (O(k),C) - E[K (O(k),C)I] (5.4.68)
kI k 11k=n

By virtue of inequalities (5.4.8) and (5.4.13), it follows that the first sum

is bounded above by A(C)A for some A(C)> 0. Concerning the second sum, we use

linearity (Assumption 5.4.3) to write, for k>t,

O(k) = u(klt)O(t) + *(klt) , (5.4.69)

where i(kit) is independent of 0(t). Also, (5.4.11) implies

hp,(klt) I 1< c~kt (5.4.70)

for some c>O, Xe[0l). Then

I covEKx (€ (k) ,c), Kl (OI,C) I < :::'

< ICov[K1(O(klt),C), Kl((t),C)]l +

+ Icov[{K ($(kit) + *~(kt)O(t),C) -K 1(j(klt),C)1,K1 (O(t),C)J1 (5.4.71)

The first term in the right-hand side of (5.4.71) is zero because 0(klt) is

independent of 0 (t). Concerning the second term we use the Schwartz

inequality and (5.4.8) to bound it by

I0

. ..." .. . •. .. " °. . ".. " , . - *•. *p'" . °
°

•". .,- . . .- .- -. . I o,
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1/2 1/2

N) 2 21,1t12 21/2
[E(110 (k) II' + 11$O(klt) I) K (C)2 kt

E(1K (O(t)C)I 2 1/2 (5.4.72)

Using (5.4.13) and inequality (5.4.70), we conclude that there is some new

constant A(C)> 0 and some X6[0,1) such that

E[{K1 (O(k) ,C)-E[K (*(k) ,C)]j {y (Ot,C) -E(K (O(t) ,C)i}]

S < A(C)X'~' Vk,t .(5.C~73)

Using Lemma 5.4.1, we can see that the last sum in (5.4.68) converges to zero,

thus proving (5.4.64).

c) The proof is identical to that of part (b). Instead of (5.4.8), we

*use (5.4.7) to conclude that

li~v[l~ko~),yQ(t4,(t),y)]II(5..74

* for some A, depending on y only; we then use Lemma 5.4.1.

d) Fix some i,j,2. and consider the double sequence of scalar random

* variables R (kIt) defined by

R (k It) = E (5.4.75)

(The subscript Z indicates that we are dealing with the :-th component.)

We intend to apply Lemma 5.4.2; we therefore need to show that condition (5.4.54)

is satisfied. Without loss of generality, we assume that Q ( 1 *(t) is

. - . ..
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zero-mean, i.e. f (t,y)=O, Vt. For the purposes of the current argument

j,k,y are held fixed; so, for the proof of this Lemma only, we will use the

short-hand notation Q(t,O(t)) instead of Q (t,y,O(t)). Finally, note that

0J(kIt) is bounded above by 1. Hence, to verify (5.4.57) we need to show that,

for A>O, Xe[0,1) and for all tl<t2<t3<t

t4-t 1

E[Q(tl,1(t1) l Q ( t 2 P ( t 2 1 ) Q ( t 3 , 0 ( t 3 ) ) Q ( t 4 , AXt 1 <  1 (5.4.76)

By Assumption 5.4.2,

lo~t4,O-ct4,05)1< P (11011, 110,11MOI-0'II, v,,. (5.4.77) -- 7

where P is some polynomial independent of t 4 . Let

r4 (O1 = E(Q(t4, (t 4 1 (cO(t 3 )=01 . (5.4.78)

. Then, using the notation introduced by (5.4.69) and (5.4.78)

Ir 4 ( )-r 4 (4')1=IE[Q(t 4 ,*(t 4 It 3 )* + *(t 4 1t 3)) -

4" 4 P 0(t 41t3)0' + '(t4tt3))]

<E[1(141( 41t3)0 + i(t4lt3)1j, IIlP(t4lt3)0'+ *(t41tY3 I ')]-

I Ip(t41 t3) 11"1 I-' II (5.4.79)

(The expectations in the above inequality, are with respect to *(t4 jt3).1 NoteC t4-t3 -

that b1 (t4It3) <cX where c,X are the constants of Assumption 5.4.3.

*.. * * ., ..* .- .* * . -- *.*

4 . -. -.
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Moreover, using (5.4.13), it is easy to see that there exists a polynomial

P ( '")' which does not depend on t3, t4 such that

E[P 1(I 1,(t 4 1t3) + i(t 4 1t3)I1,11Wct 4 1t3) ' + P(t41IO11] -

< P2(11 ,111 1) (5.4.80)

Therefore, for some polynomial P2 ( " '")2

4 -t 3

Ir4 (0)-r 4 ("') s cP2 (1MI10,11'11)X 4  (5.4.81)

Using (5.4.77), with t3 in the place of t4 and (5.4.81), and defining 0

3 4_

P Q(taVr 4 (,), (5.4.82) 1
it is easy to see that

t4-tip c0)-p3( . Id<_ p (1101, 11, , IIi , , (5.4.83) .

for some polynomial P3(
-,.-, independent of t3, t4. We may then proceed

similarly, and define

r r(0) EIp3 W~t W)j(t )=fl, (5.4.84)

P2 1) = Q(t2 , lr 3 (0), (5.4.85)

r 2 ( ) = E[p 2 (0(t 2 ))I*(ti 1 =], (5.4.86)

. pl() = Q(tl, rbh2() . (5.4.87) - '-

0 1

0- S
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Repeating the steps from (5.4.78) to (5.4.82) a few more times, we

conclude that

.~~ ~ -tI i-

-Ipl( -P1('i 1< PIII11,11,11)X (5.4.88)

" "" for some polynomial P independent of ti, t2, t3, t4  Consequently,

t -t

E[P W ()) ]4 AX (5.4.89)

for some A>0. On the other hand, note that

E[p (t = E[Q(tlo(t1 ))-E [Q(t 2 ,Q(t2 )) .E [Q(t 3 ,4(t 3)) (5.4.90)

E[Q(t4 ,0(t4)) I(t3)]I0(t2)110(t ]=

= E[Q(t, 1 (t1 ))Q(t2 ,¢(t2))Q(t 3 ,O(t 3))Q(t4,0(t4) 1 ,

which completes the proof of (5.4.76). Therefore, Lemma 5.4.2 applies to

R (kit) and proves (5.4.66).

- e) This follows from parts (c),(d), together with (5.4.21), (5.4.22)."

' " Lemma 5.4.4: Fix some weI, c>O, yeH, neIN, p>0, A>A and suppose that

SIy(n)-Yj < , (5.4.91)

I1y(n)ll<C, (5.4.92)

lix Wn)ILC, Vi (5.4.93)I

q(n,A,2C)< 1 (5.4.94)
-8

F2 (n,A,y) + e2 (n,A,y) + 7Cq(n,A,2C)< C . (5.4.95)

. * .,. ..
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Then,

Ily(m(n,A)+l) - -F(nA711:"

< 3p + 16q(n,A,2C)G(n,A,y) + C(n,A,y) +-

+ 32(qln,A ,2C) + q(n,A,2C)(d+q(n,A,2C))]D(n), (5.4.96)

where d, A are the constants of Assumption 5.4.7. (The exact values of the
0

numerical constants appearing in (5.4.94)-(5.4.96) are not important).

Proof of Lemma 5.4.4: From equation (5.4.4) we obtain 1
m(n,A) X.M1....

y(m(n,A)+1)= y(n) + 0 k *i(k)Q (k,x (k), (k)) (5.4.97)
k=n i1l

which may be rewritten as

m(n,A)

y(m(n,A)+l) = y+(y(n)-y) + I f (ky) +
k=n

m(n,A) M -
+ D L i(k)[Q (k,yO(k))-fi(k,y)] +

k=n i=l

m(nA).

0 *'(k)[Q (k,x (k) ,(k))-Qi(k,y,Ot(k)) 1 (5.4.98)
ikn i=l

Note that

I xI(k)-YIIIIxi(k)-y(k)II+IIy(k)-yII< D(k) + P(k), (5.4.99)

0 where the last inequality follows from (5.4.43). We also use inequality (5.4.6)

i
andl l (kj__ 1 to conclude that the last sum in inequality (5.4.98) is bounded

(in norm) by

• • ..-.
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m(n,A)
-K ((k),C(k)) [P(k)+D(k)] (5.4.100)

k=n k 1

We will now proceed to obtain bounds for P(k), D(k) in terms of the

quantities introduced in the statement of the Lemma. First note that

D(k) =max Ix (k)-x (k)jj< 2maxIj I(k) 11< 2C(k), Vk (5.4.101)
igj i .

P(k) = Iy(k)-yI 51 Iyck111l Is< c(k) + C (5.4.102)

Using equation (5.4.2) and (5.4.46), (with n<k<m(n,A)+l)

Mnl k-i M
Jx i(k)Ij=11 1 0. i(kIn-l) x3n) + 0 " *ii(klt)QJ (tx (t),(t))ll<

j=1 t-n t j=l

M k-i 1

+ I 0 1'( jn-1)x( n) [j+ll I - I 0i3(kt) (t,)j+

tt

j=l t=n j=.

k-i M .. '['".o

+ +I 
. _ Z * (kt)(t,Ot))-

t---n j=1

k-I M "-
+ I 1 . 1 013 (klt)EQIct,{,¢O(t)) -e (t'x 3(t),0 (t))] l -::.

t=n j=l'"- "

k-i

<C (n) + F2 (n,A,y) + £2 (n,A, y)+ [Kl(O(t),C(t))[P(t)+D(t)l
t=n•

(5.4.103)

We will use (5.4.103) to prove inductively that

C(k)< 2C, ke[n,m(n,A)+l] . (5.4.104)

Indeed, suppose that (5.4.104) holds for all k such that n<k<k, with

k<m(n,A). We start with inequality (5.4.103) and use (5.4.101),(5.4.102)

and the assumption (5.4.95) of the Lemma to obtain t

. ..'.- .". ..- ..->.-... v,. ,.'..".-.. "...-.'...'.".-, ................................... ;...........-'.."....-.'....,: . ,
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k-i
C(k+l)< C+F2 (n,A,y) + e2(n,A,y) + t KI(1(t),2C)[3C+4C]<

< C+F 2(n,A,y) + C 2(n,A,y) + 7Cq(n,A,2C)< 2C (5.4.105)

which completes the inductive proof of (5.4.104). i1:

Bounds for P(k): Consider equation (5.4.98) again, but let the upper limit

in the summation be t, instead of m(n,A), where t satisfies n<t<m(n,A). Then, ]
P(t+i)<p+1I I f f(k,Y) I I +

t M

+1 1(t,-1<_pI L j. f(k)ll(~,()-f(~fh

k=n i=i

t K((k) 2C)[D (k) +P (k)] 1 (5.4.106)
k=n

Let

+ max P(k) (5.4.107)

n<k<m (n,A)

D*= max D(k) (5.4.108)

n<k<m (n,A)

and use the notation (5.4.39),(5.4.36),(5.4.34) to obtain

p* < P+F1 (n,Ay) + el(n,A,y) + q(n,A,2C)[P*+D*] (5.4.109)

Bounds frrD(k): using (5.4.2),(5.4.46),

i 1iM 1 1

x (k)-x (k)II< I (kin-l) - (kin-1)] x (n)II +

J=n

k-i M ij 2 j
+ [ 1(kt)_y 2 2(n (k ) I(5.4t.x1(0)t)

< D(n) + 2F2 (n ,A ,y) +2e2 (n ,A ,y1 + 2q(n,A,2C)[D+P*]
-.. . .. (5.4.110)

. ' . .. .. ..- • . . - , .... .. .. .' ,-.... -.. . . .. .. .- . .,_ .. .. . . .-....A. ,.
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Suppose now that m(n,A 0)<k<m(n,A)+l. We use (5.4.23) and (5.4.32) to

strengthen (5.4.110):

D(k)< dD(n) + 2F (n,A,y) + 2e (n,A,y) + 2q(n,A,2C)[D*+P* (5.4.111)
2 2 . --

If we now add (5.4.109) and (5.4.110), use (5.4.94) to eliminate q(n,A,2C)

and bring (D*+P*) to the left-hand side, we obtain

P* + D* < 4[D(n)+p+G(n,A,y)] (5.4.112)

Suppose once more that m(n,A 0) <k<m(n,A)+l and use (5.4.112) in (5.4.111):

D(k)<(d+8q(n,A,2C))D(n) + p + 3G(n,A,y-) (5.4..113)

Similarly, using (5.4.112) in (5.4.109):

P* < 2p + 2G(n,A,Y) + 8q(n,A,y)D(n) (5.4.114)

We are finally in a position to bound (5.4.100):

m(n,A)
K (0 K((k),Cl(k)) [Pl(k)l+D (k)]<

k=n

m(nA m(n,A) 1
0 -Kl(O(k),2C)[P*+D*]+ K, (0 K(c(k) ,2C) [P*+D(k)]

k=n k-m(n,A
I0

< 4q(nA 2C)[D(n)+p+G(n,A,y)]
0

+ q(n,A,2C) [3p G(n,A,)+(d+16q(n,A,2CDD(n)]. (5.4.115)

Using (5.4.115) to bound the terms in (5.4.98) we obtain

O •2

'-"- -" '"- " ' " ' " -'. " " i;i: '  i: : S
-"- ..,-/ ;--' . .. .;i-,-"*. - --. . - - - '". - ----- . - . -il .
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J ly(m(n,A)+l) - y - F(n,A,y)fl <-

m(n,A)
< P+C(n,A,y) + -K ( (k),C(k))[P(k)+D(k)1<

k-n .-1

< 3p+ (n,A,y) + 9q(n,A,2C)G(n,A,y) +

+ 16[q(n,A0 ,2C) + q(n,A,2C) (d+q(n,A,2C))]D(n). o (5.4.116)

Lemma 5.4.5: Let H be a countable dense subset of H. Given C2>0, there exist02

A 0>0, A>0, dE[0,1) and a subset 0' of 0 (of measure 1), such that for any ae[0,1]
yeH0 (satisfying < C2 ) and for all wE Q' there exists No so that the following

is true:

If n>No, Ily(n)--Yl. a&2, I Ix(n)iI<_ c2 and

S(y i + D(n)> a , (5.4.117)

then

2 2 i~ 5418
V(y(m(n,A)+l) + [D(m(n,A)+l) <_ V(y) + D2(n) min{1,AiAll (5.4.118)

'14

* where A is the constant of Assumption 5.4.5.

Proof: Let H0 , C2>0 be given and suppose, for the time being, that A>0 has been

fixed so that A<1 and so that the assumptions (5.4.94), (5.4.95) of Lemma 5.4.4

are satisfied, (with C-C2) for n large enough. Let A0 A2 , d=A.

From Lemma 5.4.3, we obtain results on certain limits, which, for any

yeH, are valid, except possibly in a nullset. Now, since H0 is countable, there

exists some a'Cf of measure one, such that equations (5.4.63)-(5.4.67) are valid

0!

- *- . . . * -. . -.* . - ." .- - o. . . .
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for all yeHwe W'. Suppose now that a>0, yeH0 ,(Illy<C and weW have been

fixed. Let A(2C 2 ), A' be the constants of Lemma 5.4.3, let A be the constant
2]

of Assumption 5.4.5, let a>0 and define p,6 by:

a2,
p = , (5.4.119)

2
6 = min{lA a- (5.4.120)

1. 4

Using the short-hand notation

U= L (Y) (5.4.121) I
let N0 be large enough so that, for any n>N ,

2-2
G(n,A,y)< A'UA + a A (5.4.122)

q(n,A,2C2 )< A(2C2 )A (5.4.123)

2- 2
q(n,A0 ,2C 2 )< A(2C2 )A0 = A(2C2 )A2  (5.4.124)

E(n,A,y)< A2 (5.4.125)

-3v -2 2
F(n,A,y) . (y)< - U A + a. (5.4.126)

Such a N exists by Lemma 5.4.3, for the first four inequalities, and by

Assumption 5.4.5, for the last one. Let B--max{A',A(2C 2 ),1}

Using Lemma 5.4.4 and (5.4.122)-(5.4.126),

I Y(m(n,A)+1)-y-F(n,A,y)f < 3aA2 + 16BA(BUA+aA 2 + aA 2 +

+ 32[BA 2+BA(A+BA)]D(n) (5.4.127)

4 _6
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Using the inequality (5.4.117) to eliminate a, (5.4.127) simplifies to

2 2jjy(m(n,A)+l)-y-F(n,A,y) < Ml(B)UA + MI(B)D(n)A (5.4.128)

where M (B) is some constant depending only on B.

We also use (5.4.113):

2 2
D(m(n,A)+l)<(A+8BA)D(n) + aA + 2BUA + 2aA <

a
< M2 (B)A(D(n)+U) (5.4.129)

where M2 (B) is a constant depending only on B. Let-
-

w her M (LB (y) a1, costLt (y) g l (5.4.1o.)
3 lyl'<2C ya2

and use (5.4.128) in a second order series expansion for V:

V(y(m(n,A)+l))< V(y) + F(n,A,y) . 2- () + M3Ml(B)U& (U+Dn)) +

M3 2U2.2 24 2. 2.4 2 22 2

+- 16[B U A +a A +Ml(B)U A (B)U2D2(n)A2<
1AAU2A- 1(B)U'D"n)A 1

< V(y) -AU 2 A + M4 (B)A2 (U2 +D2 (n)), (5.4.131)
1 44

for some new constant M 4(B). We also square (5.4.129) to obtain

5

2 2 2 2 2
= D (n) - (1-M 5(B)A )D (n) + M5 (B)A U2. (5.4.132)

* Adding (5.4.131) and (5.4.132), we have

2 2
V(y(m(n,A)+l) + (D(m(n,A)+l)] < V(Y) + D (n) -

2AU 2 2222-AU - (l-M 5 (B)A )D (n) + (M4 (B)+M 5 (B))A (U +D (n)). (5.4.133)
1 54

• " . .
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Clearly, if A has been chosen so that

2 3M (B)A> (5.4.134)
5

2 1(M4 (B)+M 5 (B))A < - , (5.4.135) --

A1
(M (B)+M (B))A <- , (5.4.136)

4 52

then

2 2 A
V(y(m(n,A)+l)) + [D(m(n,A)+l]2 < V(7) + D 2(n) - -U2A -D (n) (5.4.137)

_2 2

2
Now note that U + D (n)>- which shows that

2

inequality (5.4.118) is satisfied. Moreover, note that A was selected only as a

function of B, which in turn depended only on C2, as required.0

Lemma 5.4.6: Under the assumptions of the Theorem,

lim inf [V(y(n))+D 2(n)]=0, (5.4.138)

almost surely.

Proof of Lemma 5.4.6: Let C<- be the constant appearing in the statement of

the Theorem. Let

2C = max V(y) + 4C + 1 (5.4.139)
17 1_c --C

7- 7
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and note that if jjx i(n)JI<C, Vi, then V(y(n)) + D 2(n)<C. Then pick a new

constant C2 such that inf V(y)>C1 . Such a constant exists, by (5.4.19).

II YlIIC2

Let H0 be a countable dense subset of H and choose A0, A, d, ', as in

Lemma 5.4.5.

Fix some weW' and assume, to derive a contradiction, that

2
lim inf [V(y(n))+D (n)] = b>0 (5.4.140)

We also define

a'= 1 lim inf [. y n))II+D~n)• (5.4.141)

3 n-0~ ay n)IDn)

Using Assumption 5.4.5 and (5.4.140) we conclude that a>0. Also note that

b<C 1 and let a--min{l,a'}.

By a standard compactness argument, we can see that there exists some

yeH and a sequence nk of integers such that:0

1IyII< C2  IIxi(nk)II< C2 , Vi,k (5.4.142)4'

I lY(k)-711,<_.. A2 Vk. (5.4.143) : "

I1v ((n))- ! (j 11< a, wk, (5.4.144)

min{l,A , (5.4.145)

lIvcynk))-V(y1 12. { 1

V(y(n) + D (nk)< b + min{1,A Ala (5.4.146)

KI

-- v

(y I ((nk) )IrD (nk) >2a .(5.4.147)

Sy
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If nk is large enough (larger than the constant No given by Lemma 5.4.5),

then (5.4.118) holds and yields:

V(y(m(n,A)+l)) + [D(m(nkIA)+l)] 2 < V(y) + D2 (n -k

2
-min{1,APA - <

4-2. 2

< V(y(n. )) + D2 (nk) + - min{lA }a2<

b min{lA&9a 2 
, (5.4.148)

thus contradicting (5.4.140).O -

To complete the proof of the Theorem, we may assume that

2lim sup [V(y(n))+D (n ) ] = a>0 (5.4.149)

and derive a contradiction. The argument involved is identical to the

corresponding argument of Ljung (1977a] and we only provide an outline.

Given any a'e(0,a) we may choose an integer sequence I k' and a vector

(y,l,...,x ) with yel O , such that y(nk) is close to y, xl(nk ) is close to

x ,V(y(nk))+D(nk) converges to a' and such that, after time nk, the quantity

V(y(n))+D(n) reaches the level a-e before falling below a'-e, where £>0 has been

chosen suitably small. There are two cases to consider:

(i) If the level a-e is reached before time m(nkA)+l (where A=/-

sis chosen as in Lemma 5.4.5), then provided that a' is small enough, (5.4.96)

is contradicted.I

. . . .. . .
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(ii) If the level a-e is reached after time m(n.,A)+l, then Lemma 5.4.5

implies that V(y(n))+D(n) should first fall below a'- , before reaching the

level a-e, thus contradicting our assumption.

Therefore, -

lim[V(y(n))+D(n)]=0, almost surely, (5.4.150)
" xi

which implies lim y(n)=x*, lim D(n)=0, or, equivalently, lim x (n) x*, Vi,

almost surely. .

Technical Remarks on the Proof of Theorem 5.4.1

The preceding proof has certain basic similarities with the proof of

Theorem 1 of Ljung [1977a]. The main difference is that instead of keeping track a

of the evolution of one state vector only, we also need to keep track of the

magnitude of the disagreement between processors, which complicates greatly the

associated inequalities. So, unlike Theorem 5.4.2 that follows, the preceding

proof differs from Ljung's in non-trivial ways.

Another difference is that Ljung's Theorem 1 required a returning condition

on the process { (t)}, in addition to the returning condition of the state of

computation. It may be seen in Ljung's proof that this condition was necessary

only for algorithms in which the dynamics of the process (O(t)} were influenced by

the state x(t) of the algorithm. Such a possibility, however, was not allowed

by us and the returning condition on {O (t)} was not needed.

* The Associated ODE

The results of Ljung [1977a] are not so useful for rigorously demonstrating

convergence of stochastic algorithms; rather, by associating an ordinary differen-

-- tial equation (ODE) with such an algorithm, they provide a simple heuristic -

I:.

* TA
; .:.y - .... ._.. ... ...... i.. .. . . . . . .. .. . . . : .. . .
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method of analysis of recursive stochastic algorithms. In fact the ODE is not

essential in Ljung's result. The mathematically important entity is the Lyapunov

function associated with this ODE. (This is pointed out in Appendix V of

[Ljung 1977a]).

For this reason, our result has been formulated exclusively in terms of

the function V, without reference to an ODE. Our result translates easily to an

ODE-type result if we assume that the algorithm is (asymptotically) time invariant.
m(n,A)1 1

More specifically, assume that lm k f(k,x) exists, for Any A>O, and is
n-m k=n

independent of A. Let us denote this limit by f(x), and note that, by Assumption

5.4.5, V is a Lyapunov function for the ODE x=f(x). Conversely, if the equation

xc-f(x) is globally asymptotically stable, we may invoke converse stability theorems

to construct a function V satisfying Assumptions 5.4.5, 5.4.6. Consequently, the

algorithm will converge to the point of convergence x* of the ODE x=-f(x).

Extensions

Theorem 5.4.1 is a decentralized analog of a special case of Theorem 1 of

Ljung [1977a]. Modifications or generalizations of this result are possible,

along the lines of Ljung. We discuss some of them below:

1) We may assume that the function V is such that inequality (5.4.20) is

only satisfied on a bounded subset H of H. (In the ODE language, the equation

k-ff(x) has a bounded domain of attraction.) Then, 'there exists a subset H2 of H

such that, if the algorithm returns an infinite number of times to H2 , and if A0,

d are small enough, then the conclusion of Theorem 5.4.1 remains valid. (The

proof is effectively identical with that of Theorem 5.4.1).I.

Io
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2) Suppose that the algorithm is asymptotically time-invariant, so that

we may associate an ODE x=f(x). Then, under certain additional smoothness as-

sumptions (see Theorem 2 of Ljung [1977a]) we may prove that the algorithm may

converge only to stable equilibrium points of xf (x).

The final and most important extension is to allow the dynamics of the

* process {O(t)} to be influenced by the states of the algorithm. This extension

is necessary if we want to apply the results to algorithms for adaptive control

or to certain system identification applications [Ljwng, 1977aJ. For technical

reasons, we have not proved convergence under the assumption that the algorithm

returns infinitely many times to a bounded region. We use the stronger assumption

that the processors come arbitrarily close to agreeing, infinitely many times.

We also assume that the process of communicating and combining is faster than the

algorithm. Then, whenever the processors are very close to agreeing, the algorithm

behaves (up to first order) as a centralized algorithm and the centralized results

may be recovered by replicating the proof of Ljung. The result that follows,

although important from the point of view of applications, is not significantly

different - mathematically - from Theorem 1 of Ljung. For this reason, we only

give an outline of the proof. Moreover, we formulate the Assumptions and the

result in the language of Ljung, so that a direct comparison may be made.

i H.
Let z(n) denote (x (n),...,x (n)), which is therefore an element of HM.

Also, for any xeH, let z(x) denote the M1-tuple (x,x,...,x).
I- .

I|

6.
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Assumption 5.4.8 i i "..

a) The steps s (n) are given by Q (n,x (n),O(n)), where the process

{*(n)} is generated by *(0) = e(0) and

o(n+l) = A(z(n))O(n) + B(z(n))e(n) . (5.4.151)

Here {e(n)} is a sequence of independent random vectors, defined on an

underlying probability space (M,F,P) and such that

sup E(II0(n) IIp]< - , vp>1 (5.4.152)
n

MLet Ds  {zeH :A(z) is asymptotically stable). Let D CH be open and connecteds R

and let DR denote the Cartesian product of DR with itself, M times. We assume -

that A(.) and B (.) are Lipschitz continuous on and that CDs .

Let X(z)<l be such that

II A(z)I< CA(z), Vke N (5.4.153)

For any zED, A<l, cO, we define the stochastic processes (tz), u(t,X,c)

by 0

0(t,z) = A(z)l(t-l,z) + B(z)e(t); 0(0,z)=O, (5.4.154)

u(t,Xk,c) - Xu(t-l,X,c) + clet) I u(O,X,c)=O. (5.4.155)

(So, T(t,z) is the process to be obtained from (5.4.151) if z(n) was "frozen"

to a value z; also, if X-X(z) and 1IB(z)I11_ c, then u(t,X,c) is a bound for

*(t,z).1

Let B(x,p) denote a (closed) ball of radius p around some point x. We

assume that, for any function p: H(0,0),

9

.

* * -- . . -.
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.
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I IQi(t,x',,')-Q (t~x'',, ') j L< K1 (X,O,p(x),u){I Ix'-xl 1+11l$-'"1 II (5.4.156)

for any i>O, x', x", 0', *".satisfying x'eS(x,P(x))lnDR

x"eB (x•P(x))f DR• *'eB(•u), *"eB (1,0).

Moreover, the function K1 satisfies

K" (xO',pu') - K (x'O"'P'u")I< K (x1O'P'U'w). (5.4151 12 (5.4.157) -

whenever O'eB(O,w), O"e8(l,w), u'eB(u,w), u"eB(u,w).

i -c) For any XeDR, the random variables Q (t,x, (t,z(x))),

K1 (x,O (t,z(x)),p(x), u(t,A,c)) and K2 (xO(t,z(x))'p(x), u(t,L,c), u(t,X,c)) have

bounded p-moments for all p>l, and all X<l, c<-.

d) The step-size y(n) is equal to 1/n. Also, communication delays are zero

(or, more generally, bounded) and for any A>0,

lur Max II'i (nIk) - 0J()11=o (5.4.158)
k-x* n>m (k,A)

(That is, the process of communicating and combining is faster than the

natural time scale of the algorithm. This is the case, in particular, if

Assumptions 5.2.1, 5.2.3, hold.)

e) lira E[Oi t)Q (t,x,*(t,zlx))] exists, for any xeDR  and is

1 M
denoted by fi(x). We let f(x) - . ix).

Theorem 5.4.2: Let Assumption 5.4.8 hold. Let D be a compact subset of D R

such that the trajectories of the ODE

I x'f(x) (5.4.159)

• . .
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that start in D remain in a closed subset D' of DRA Assume that (5.4.159)

has an invariant set D with domain of attraction D AD D. Also assume that

there exists a constant C such that, for almost all weQ, there exist sequences

{*}, { k1 (keIN, n+i >n,', e >° ' im =0 such that y(n.k)eD,
k-)co

II (nk) IISCO, D (nk) < . (Recall that D(n) =max I Ix (nk)-x)I(nkI-)
i,j

Then x(t)- D , with probability one, as t-.
c

Proof (Outline, following Ljung):

Step i: Fix some yeD . Let p=p(y) be small enough and suppose that for some n* 5

we have: Y(n)eB(yP(Y-)), D(n)<p(y) IO(n)I< C Fix some small enough A>0 and

m(n,A) 1i i -

assume that n is large enough so that . jD (k)Qi(k,y,j(k,z(y))-Af(y)

can be made as small as desired. Then, provided that p,n,A have been appropriately

chosen, we may conclude that x (k)eB(y,2P), Vi, fke[n,m(n,A)]. It then follows that

*(k)z *(k,z(y)) and, consequently, y(m(n,A))=y(n) + Af(y). Also, with n large

enough, D(m(n,A)) becomes arbitrarily small, due to (5.4.154).

Step 2: Let V be a Lyapunov function for the ODE (5.4.155). If the algorithm

returns infinitely often to the vicinity of some yeDR (with V(y)10) and if at those S

D(n) is small and (n)l , we use the results of Step 1 to show that the

algorithm also returns to the vicinity of some y'eDW, with V(y')< V(y), infinitely

often and that at those timesD(n) is small and 10(n) < C Proceeding in this -

manner, we conclude that lim inf [V(y(n))+D(n)]=0.

* =

* _

. . . - • . . • • . • . ° .* . * .- - . * .. .* V. .*- .• . .
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Step 3: If lir V(y(n))jO, it means that V(y(n)) must "upcross" an interval
|-.-

- [a,a'] (with 0<a<a') infinitely many times. Choosing a and a' small enough, a

version of Ljung's argument leads to a contradiction.g

Remarks.

1. Note that Theorem 5.4.2 assumes that the algorithm returns infinitely

often to an appropriate region (as in Theorem 5.4.1) but also that the disagree-

ment at those returning times is arbitrarily small. This condition on the

disagreement may be enforced if once in a while each processor communicates to

every other processor and they all combine using the same coefficients; in other

words, disagreement is explicitly eliminated, once in a while. More natural

conditions are also possible.

2. The ODE approach cannot be used to prove global convergence of an --

algorithm. However, certain algorithms with correlated noise are known to

converge, most notably the ELS algorithm for system identification [Solo, 19791.

However, global convergence of decentralized versions of such algorithms does not

follow automatically and has to be verified by other means. Moreover, general

convergence results do not seem possible; rather, small classes of algorithms must

be studied separately.

6r

6 . ...

6°
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3. In Theorem 5.4.2 we have assumed that the decentralized algorithm

is asymptotically time invariant, so that an ODE may be attached to it.

This is not necessary and the result may be stated directly in terms of

Lyapunov function V. (See Assumptions 5.4.5, 5.4.6 and their discussion,

as well as Appendix V of Ljung [1977a]).

4. Finally, the proof when delays are bounded (instead of zero)

is the same, provided that the appropriate state augmentation has been

made, and the returning condition is appropriately modified.

5.5 APPLICATIONS IN SYSTEM IDENTIFICATION

Many recursive stochastic algorithms for on-line system identification

are pseudo-gradient algorithms or, more generally, recursive stochastic

algorithms of the type considered by Ljung [1977a]. For a review of

such algorithms and their convergence properties, the reader may refer

to [Ljung, 1981; Goodwin and Payne, 1977; Astrom and Eykhoff, 1971].

Consequently, it should be expected that our results of Section 5.3 and

5.4 may be used to study the convergence of decentralized identification

schemes. An interesting related issue is the problem of how to decompose

(decentralize) an identification algorithm, so that the resulting scheme

is a reasonable and attractive alternative to the corresponding centralized

algorithm. In this section, we present and discuss a few possibilities.

!i : ;. , :: ..: . .,.: , :::, :. ,:2 :: :- _,_ : L ':,' . : ::.:::? :_ _. :; , ;. '
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Example 1: Processors Identifying Identical ARMA Models

12Let z (t), z (t) be autoregressive moving average processes described

by

z W + (t-1)+...+a n  + i 7;']

b +auz(t) +. .. +a z(t-m) + wi(t), i - 1,2, (5.5.1)

2iwhere w (t), w (t) are zero-mean white noises and u (t) is an input

process known by processor Pi, i=1,2. Processor P also observes at

itime t the output z (t) and tries to estimate the parameters a and bk

of the process. Note that we are assuming that the parameters ak

and b are the same for both processes, that is, they do not depend on i.
k

We may let q be the backward shift operator and rewrite (5.5.1) in

transform notation:

A(q)z (t) =B(q)u (t) + w (t), (5.5.2)

where

A(q) = 1 + alq+. . .+a qn (5.5.3)

mB(q) = b + blq+...+b q (5.5.4)

The two processors are to cooperate, by exchanging messages, in

identifying the unknown parameters. (see Figure 5.5.1). An interesting

special case of the above configuration is depicted in Figure 5.5.2, in

12which A(q) = 1 and the input processes u (t), u (t) coincide. This is

the case of two processors obtaining noisy observations of the output

of the same (moving average) process.

-. ..- ". . " . . " .. ' . . '-' . - - ' ." .- . .. -. .. '.. _ . . ..- .. " .• -. . . . . " - , "' " . .
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B (q)

0 bi b

Figure 5.5.2: Two Processors Identifying the same Moving Average
* System.
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The first possibility in the above setting is to let each processor

use any of the standard ARMA identification algorithms, in isolation, -

without exchanging any messages at all. Then (provided that certain

identifiability conditions are satisfied [Astrom and Eykhoff, 19711),

each processor will, in the limit, recover the true values of the

parameters.

It is clear, however, that better estimates may be constructed (i.e.

convergence may be faster) if the two processors cooperate by exchanging

some information. Moreover, it is possible that none of the inputs

1 2 is rich enough to allow either processor to identify all parameters

alone, but that the parameters may be accurately identified on the

basis of both sets of measurements.

A trivial alternative is to let process6r P transmit -all its

measurements to processor P, as they are being observed, and then have

2processor p compute a "centralized" estimate. This would require, however,

an excessive amount of communications.

Another alternative would be to proceed along the lines of Chapter

4, whereby at each instant of time each processor computes an estimate

which is optimal given its information, including the messages it has

received. This would be, however, computationally hard, in general:

even if all random variables are Gaussian processor P1 would be faced

with a nonlinear estimation problem unless it could directly measure
2 p2
u2. (This is because the estimate of processor 2 at any time is a

2nonlinear function of u2.) If the inputs were commonly observed, then

each processor would face a linear problem at each time (this is the LQG
6

* - * . - ,-. -
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setting of Section 4.4), but still not an easy one, except for the very

special case in which communication delays are zero and the noises w _

2w are independent. In the latter case, the results of Willsky et al.

* [1982] could provide us with an optimal updating rule.

So, there is a clear trade-off between optimality and the complexity

of the scheme. An approach that lies in the middle, and which we will

consider, is to let the processors combine their own estimates with the

messages received (estimates of the other processor) by simply forming

a convex combination, according to the model proposed in Section 5.2.

We now continue with a more detailed discussion. Let

x*= (a, a2 ,..., an; b0 ,bl... ,bm)T (5.5.5)

be the vector unknown parameters and let

i i i i i T

i=1,2 . (5.5.6)

Then, (5.5.1) becomes 4
i i i i

z(t) (t)Tx + w(t), i=1,2, (5.5.7)

and i'i(t) is a vector which is known by processor i at time t.

* The simplest algoritm to be considered is the LMS algorithm [Ljung, S

. 19811: in the absence of any communications, processor i forms the

estimate x (t) recursively, as follows:

^i~l A ii T~i
xtl ( it) + ( it) (zi l(t) - ) (t) x5..W

in the notation of Section 5.2, Y1(t) l/t and

0 ". . " . " "--y . " i " . , : '



.. ' ' . ---.-*.-'- ;---7. -- - -.-- - -

* -213-

.L- i i i A
s (t) (t) (z (t) (t)x (t))

i tT

We also consider the NLMS algorithm:

= i (t i Tt}
x. (t+1) X^(t) + (z i (t) - i (t)Txi (t) (5.5.9).t (t) 12 +

for which

u T i
si(t) -i(x- x(t)) + w (t) (5.5.10)

Il1pi(t)11 2 + C IIPi(t)112 +

where e>0 is some constant introduced to avoid division by zero.

. Let F be the a-field generated by {qi(0),...,'1 (t); i-i,2}, and
t

introduce the cost function

J(x)= I(x-x*) (x-x*) (5.5.11)
2

We assume that E[w(t) IFt ] = 0, i=1,2; so w (t) is uncorrelated with pastwit

i i
values of wi , as well with past values of ui . We then have, for the iKS

algorithm:

E 4j (x s.(t),'(t)>IF -

x (t)

(tI * T [*i() I t T( A M pi Mi I
t

Ti i Ti'-". _(xi (t)_-x,)Tli (t) *i (t)T (2i (t) -x*) <_L 0 (5.5.12)

Similarly, for the NLMS algorithm,

"- . . .'. " . ."'. " ". ~ ~ ," . . - " . . ", '-. - -. . -'

" " "'" . " -" - ' ,[-:.-,.'-.. . ,. ", ." . ,. i . ."'.. . . . . . . . . .. . . . .-. " .... .-... ... v .. .'.. .... . ."...-.... .-. ."
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A

'" J ,i si

E -(x (t), s (t)>IF =
ax t

T t ) i T .-= 9 - i t ) X*)T  (Rl lt )-x *) +, (5.5.13) "
IItPi(t)l! 2 +

so that, for either algorithm, the pseudogradient Assumption 5.3.3 is j
satisfied.

Moreover, in either of the following two cases:

(i) For the LMS algorithm and with ti (t) a process whose sample

paths are bounded by some A>O (so that sample paths of ui (t) and w i (t)

are also bounded),

(ii) For the NLMS algorithm and with w (t) a process with finite second moment-

It is easy to see that

EE--llsi(t) 112  < AE[J (qi(t)1 + 8, Vi,t (5.5.14)

for some constants A,B, so that Assumption 5.3.5 is also satisfied.

Concerning the process of communications, we assume Assumptions 5.2.1, 5.2.3

iand 5.2.4. We are also assuming that all components of R are equally

weighted when combining the estimates of two processors; therefore, the

matrices 0iJ(kt)and OJ (t) of Section 5.2 are actually scalars.

It follows from Theorem 5.3.2 that21 TiiA

ti (t) (Ailt) - x*) Q t) (x It) - x*) < ( (5.5.14)

almost surely, where Qit) is defined as follows:

i i itT
i) (IMS) Q (t) - ki (t)'t) (5.5.15)

* Naturally, we assume that the system (5.5.1) is stable.

,. ." . . ... . 2 .... .. . . .. . .. . ... .. . . .
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(ii) (NUMS) Qi (t) = ( (5.5.16)

II bi(t) 112+E -

We also know from Theorem 5.3.2 that t) x (t) converges to zero and

T ithat ( -t) x*) (x t) - x*) converges to some value, almost surely,

for each i. However, the preceding do not imply yet that X^ (t) converges

to x*. For this we need some identifiability condition; that is, the

inputs u (t) must be sufficiently rich. As an example, we present a

convergence result, very similar to results for centralized identification;

in which we also summarize the preceding discussion.

Theorem 5.5.1: Let the processes z (t) be obtained from (5.5.1) and

assume that

E[w Ct) IF t  = 0, sup [lwi(t) 12 < " (5.5.17)

Let Assumptions 5.2.1, 5.2.3, 5.2.4 be satisfied. Consider either the INS

algorithm (with jji (t) j bounded by some constant) or the NIMS algorithm

and assume that there exist constants ae, 8>0 such that

k+a 2
EE Q,(t) Fk] > 0i, Vk e 3N,a.s. (5.5.18)

t-k i-1

where I is the identity matrix. Then,

lrmn R(t) - X*, 1-1,2, (5.5.19)

almost surely. "

Proof: From the proof of Theorem 5.3.2, we obtain

lim max E[IIi(k) -
£ j (t)II21 -0, i,j-1,2 (5.5.20)

kc-P k<t<k+a

i _

- - " • 4 . - , -,, ,- • . . . -
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Moreover, Theorem 5.3.2c yields

AT i .jlir inf E[(xi(t)-x*) Q (t)(x (t)_x*)]=O, i=1,2 (5.5.21)

Combining (5.5.20) with (5.5.21) and using the fact that Q (t) is bounded,

we obtain

T° ..-

lir inf max E x (ik-x*l] 0 (5.5.21)
k- k<t<k+a

and, consequently,

2 k+a T
lir inf 7 E(li(k)-x*)T Q lt)( (k)-x*)] = 0 (5.5.22)
k+- j=l t=k

and, using Fatou's Temua,

ST [j2 k-Ia
lim 4nf (i(k)-x*) E Q? (t) F (xi(k)-x*)-0 , (5.5.23)k4 Lj ' t=k Ik_-

which, in view of (5.5.18) implies that

limr inf{l ilk) - x*(k) 2 0. (5.5.24)

Oni' 12

On the other hand, by Theorem 5.2.3a, 1{ (k)-x*{ converges, which ..

shows that x (k) converges to x*, almost surely..

We now continue with the same example and consider the RLS (recursive

least squares algorithm). In this algorithm each processor evaluates

recursively (in the absence of communications) an auxiliary quantity (a

matrix) Ri (t) [Ljung, 1981]:

i i 1 -i i iR (t+l) - Ri(t) + - ['i(t)4i(t) R(t)] (5.5.25)
t

and updates its estimate according to

- % - . ° . , • o . -~. '. ' '+. , o .. . .-. .+..
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x (t+l) = (t) + -R' (t+l)] - (t) [z (t) (t)Tx (t)] . (5.5.26)
t

This algorithm is not a pseudo-gradient algorithm, at least when the cost

''Ii ii i Tfunction is Jx) - 1 ,x.I 12 because [R (t+l)l -i (t) W(t) is

not necessarily nonnegative definite, even though it is the product

of two non-negative definite matrices. It may be analyzed, however, via the ODE

approach as in Ljung [1977a]. Let us assume the following:

i) Assumptions5.2.1, 5.2.3, 5.2.4. (The time scale of the combining process

is faster than the natural time scale of the algorithm.)

(ii) All entries of R and all components of R are combined using

the same weights, so that 4i (t) is actually a scalar for each i,t. More-

i iover, = lim t) exists, for i-1,2.

(iii) For each i, the input U (t) and the noise w (t) are stationary

and independent stochastic processes. In particular, w (t) is zero-

mean, white, with all moments finite. Also, u (t) is the output of a

linear time invariant, asymptotically stable system, driven by some i.i.d.

noise e (t) which has finite moments.

Let

i *i i iT
f (x) E[) x] (5.5.27)

i i i T
G =E [i (t) t) 1 (5.5.28)

6

(The expectations do not depend on t, because of stationarity.)

For the case of only one processor, the associated ODE was found by

LJung to be:

..........................................................
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SR-(t)f(xlt) (5.5.2 9a)

G(x(t)) - R(t) (5.5. 29b)

It follows that the ODE associated to the decentralized algorithm with

two processors is:

ic(t)= R (t) (D f (x(t)) + 2 f (x(t))) (5.5.30a)

f(t) 1 IGI + 2G2 - R(t) (5.5.30b)

Let

i(t) = (x*-x(t)), (5.5.31)

where x* is the vector of true parameters. Then,

i-.
fi(x) = G x , (5.5.32)

so that (5.5.30) becomues

(t) =R-l(t)(DG +L 2G2x -l) (5.5.33a)

-1 112 2 2- -
A(t-)= (4D G + (DG2) - R(t) = G - R(t) (5.5.33b)

where '-1

G 11 +22 ( 15.5.34)

Introducing the function

V(R,R) TR , (5.5.35)

we can easily check that this is a Tyapunov function which proves that

the ODE (5.5.33) is asymptotically stable, with domain of attraction I
{(i,R):R>0J and converges to the point (x,R) (0,G), provided that G>0.

* _
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The condition G>0 effectively requires that the input processes u (t)

2and u (t) are "sufficiently rich" so that all parameters may be identified.

Note that if we have G1>0, for some i, then processor i would be able

to identify all unknown parameters by itself. However, it is conceivable

that G1 and G2 are singular, butG + G2 > 0 (so that 0IG1 + 2G2 > 0)-"-

In that case, no processor may identify

the parameters by himself, but the two together can. The condition

(5.5.18) introduced in Theorem 5.5.1 is a similar "joint identifiability"

condition.

We have effectively shown that the distributed RLS algorithm converges

appropriately under certain assumptions, including the assumption

G>O. However, this result is valid under the assumption that the algorithm

returns an infinite number of times to a bounded region. This latter

assumption has to be verified using different means, but we conjecture

that it holds.

A further issue which suggests itself is the problem of choosing

1i 2 so as to maximize the speed of convergence of the algorithm.

Given that the ODE (5.5.33) is an approximate description of the

asymptotic behavior of the algorithm, the question becomes: given G

21 2G what are the choices of 01, 02 which maximize the rate of convergence

of the ODE (5.5.33)?

Example 2: Two Processes Driven by a Common Colored Noise.

1 2Consider two stochastic processes z (t), z (t) which are generated

by

A (q)zi(t) - B (q)u (t) + w(t), i-1,2. (5.5.36)

* *,•.-* .



-220-

0 4h

Here A (q), Bl(q) are polynomials, q is the unit delay operator, u (t)

is an input stochastic process and w(t) is a common noise process. We

assume that w(t) is not white and is generated according to

w(t) =C(q)v(t), (5.5.37)

where C is a monic polynomial and v(t) is a white process. (See Figure

5.5.3). Without loss of generality, we assume that the polynomials

i iA i(), B (N, C() all have the same degree, which is denoted by k.

In the single processor case, it is well-known that LMS or RLS

algorithms lead to biased estimates. Consistent estimates may be obtained,

however, if a processor also tries to identify the parameters of the

polynomial C(q). One such algorithm, the Extended Least Squares

algorithm has been shown to be globally convergent and a returning condition

is not required [Solo, 19791. (Some confusion may arise due to the

fact that different authors use different names to denote the same

algorithm. For example, what we call ELS, is called AML by Solo.)

For the example, in Figure 5.5.3, either processor could try to

identify A (q), B (q), C(q) by itself. However, since they both

identify the common noise source C (q) they might benefit by exchanging

and combining the estimates of the coefficients of C (q). We then •

obtain the following algorithm (this is the stochastic approximation

version of ELS):

Let

c= Cc,... (ck) (5.5. 38)

* - . , 1-1,2 (5.5.39)

k0
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C(q)

zt~t) 2(t)

* Figure S.5.3: Two Systems Driven by a Common Colored Noise;
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be the vectors of true parameters to be identified. Note that processor

i is interested in identifying just the vector (6", 8*). Let
i o0

- (n) = (00(n), 6(n)) be the estimate of processor i At time n. In
:.0

the absence of any communications, the computations performed by

processor i, at time n, are the following:

Processor i has already computed

(n) = (-z (n- 1 ),...,-z (n-k), u (n) ,...u (n-k),

T, (n-l),...,D (n-k)). (5.5.40)

He updates 0 by

ii • iTe (n) = 0i(n-l) + n (n) (y (n) - pi(n)0i(n-l)) (5.5.41)
n

'"He computes the residual

ni (n) y(n) -iT (n)0 (n) (5.5.42)

and uses it to compute 4i(n+l).

In the absence of communications, we obtain a different ODE for each

processor. Namely:

"1 Wl f 01W 1* 8(t f1  (t), 00(t))
(5.5.43)

W f l (61 l) 6^ (010 1 00 ()

0 and similarly for processor 2. In the presence of communications of the

values of ^i let use assume that the Assumptions of Theorem 5.4.2 are80,

satisfied and that 0i (t) = I (independent of time). We then obtain

a joint ODE, which is:

-0i

, • . ., - . . . , , " . .- " . . " , -. ' . .- • : -
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flt = 6 fl (t), ao(t)). .

82(t) = f (2 (t) t)) (5.5.44)
2 2 2 0

0o(t) = DiflO(l(t), 0(t)) +D f 20(2 (t), 6 (t))

Ljung [1977b] has shown that the ODE (5.5.43) associated with the centralized

ELS algorithm is asymptotically stable (and all required conditions are

satisfied) provided that the positive real condition

Re C(e ) > 0, VO e [0,27] (5.5.45)

is satisfied. Moreover, stability may be demonstrated using the Lyapunov

function

v'(eie 0 ) -- 0- -e. 1 12 + 1Ie 0 e *1 2  (5.5.46)

Even though (5.5.43) is stable, for i=1,2, it does not seem to follow that S

(5.5.44) is stable as well. For this reason, we introduce a small

modification. Namely, we assume that processor i updates the first

2k components of 0', using S

• i i i" iT 'i
e (n) = 8 (n-l) + - (n) (y (n) - (n)8 (n-l)) , (5.5.46)

instead of (5.5.41). The remaining k components (those corresponding

to C(q)) are updated according to (5.5.41). Then, the ODE associated

to the decentralized algorithm becomes:

W = 4f(e(t), (t)) '1

e2 (t) = $2 f 2 (2(t) (t)) (5.5.47)

S o 1 flO( l(t), 0 (t)) + P2 f 2 0 (62 (t), 0o(t)) -

4 - ,
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This is a convex combination of two stable ODE's with a common Lyapunov

function

V(811 , E - Ile - e I12 + 101 - e*112 + Ilie - e*112 (5.5.48)

It follows easily, that the (modified) decentralized ELS algorithm is I

associated to an asymptotically stable ODE. Consequently, it converges

to the true parameters, provided that the returning condition is

satisfied.

5.6 DECENTRALIZED GRADIENT AIWRITHM FOR AN ADDITIVE COST FUNCTION

The results of Section 5.3 on deterministic pseudo-gradient algorithms

(Theorem 5.3.1) show that, given a bound on the time between consecutive

communications and on the communication delay, we can find a small

enough step-size so that the algorithm is convergent. Moreover, by

tracing the steps in the proof of Theorem 5.3.1, it is possible to

actually evaluate a bound y* on the step-size, to ensure convergence.

We may also follow a reverse approach: given a step-size, we may

evaluate a bound on the time between consecutive communications and -

communication delays, so that the algorithm converges. However, the

bounds to be so obtained are not necessarily tight, much of the structure

of the problem may be lost and, finally, they may be not particularly

illuminating.

In this section we impose more structure on the nature of the

optimization problem and the algorithm under study, so as to obtain more 0

specific results. The conceptual motivation behind this new approach is

based on the following statement which seems reasonable, at least on an

intuitive basis, from a normative perspective:

0 .0
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If an optimization problem consists of subproblems, each

subproblem being assigned to a different agent (processor),

then the frequency of communications between a pair of processors

should reflect the degree by which their respective subproblems

are coupled together.

The above statement is fairly hard to capture mathematically. We

believe that this is accomplished, at least to some degree, by the model

and the results of this section. An extensive conceptual discussion of

these results may be found in Section 5.7.

Let J:R -[0,0) be a cost function to be minimized, which has a special

structure:

MM
J W) J a(xl,..,N) J, (xl,...- V) (5.6.1) .

where J-:RM [0,-1 So far, eguation (5.6.1) does not impose any restriction

on J; we will be interested, however, in the case where, for each i,

Ji depends on x. and only a few more components; consequently, the
1

Hessian matrix of each Ji is sparse.

We view J as a cost directly faced by processor i. This processor

is free to fix or update the component x., but its cost also depends on

a few interaction variables (other components of x) which are under the

authority of other processors.

We may visualize the structure of the interactions by means of a

directed graph G = (V,E):

(i) The set V of nodes of G is V - {1,... ,M}.

(ii) The set of edges E of the graph is

E - {(i,j): JJ depends on x.} (5.6.2)2.

4. ii
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For example, the graph is Figure 5.6.1 corresponds to a cost function . .

of the formJ 1(x1 ) + J2(x x2' x 3) + j3(x2 ' x3) .

Since we are interested in the fine structure of the problem, we

quantify the interactions between subproblems by assuming that the

following bounds are available:

< . _Kj, Vx e (5.6.3)
<K., K.,1xe

and note that K. can be chosen so that

M
Ki < I K. .  (5.6.4)--k~l 13

S|
A centralized gradient-type algorithm for minimizing J is the

following:

= n) E (x(n)), (5.6.5)

x (n+l) = xi (n) - i( (5.6.6)

The summation is (5.6.6) needs to be carried out only for those j's 7

such that (i,j) 8 E, because otherwise XJ(n) is zero. This has to1

be kept in mind when considering implementationsof the algorithm. The

above algorithm may be implemented in a synchronous decentralized way

as follows:

0 Algorithm 1:

1. For each (i,j) e E, processor i evaluates Xj (n) according

to (5.6.5).

0-

"E-

."0 ? -. .. : -. " . - - . , . ...
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Figure 5.6.1: The Graph Associated to an Additive Cost Function.
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2. Each processor i uses (5.6.6) to update x..

3. For each i,j,k such that (i,j) e E, (k,j) e E, processor --

k transmits xk to processor i.

It is more interesting, however, to assume that the functional

form of JJ is stored only in the memory of processor j and no other

processor "knows" JJ, i.e. the input is itself decentralized. (Such a

configuration has lower memory requirements). In such a case, it is

more meaningful to let the first step in A'gorithm I be executed by

processor j (instead of processor i) and then have processor j transmit

the result to processor i. We then obtain the following:

Algorithmi 2:

1. For each (i,j) e E, processor j evaluates XJ(n) according

to (5.6.5).

2. For each (i,j) e E, processor j transmits Xj(n) to processor i.

3. Each processor i uses (5.6.6) to update x..1

4. For each (i,j) e E, processor i transmits x. (n+l) to
1

processor j.

0 Algorithm 2 is mathematically equivalent to the centralized algorithm

(5.6.5) - (5.6.6) but has certain drawbacks: a) There are strict

synchronization requirements; b) If there is some pair (i,j) such that

* comunications from i to j are particularly slow, the operation of all

processors has to be slowed down. For these reasons we are interested in

an asynchronous version of Algorithm 2 which tolerates communication
0%

*i
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delays. In fact, the algorithm we present below may also allow us to reduce

the number of transmitted messages per stage. The specific advantages

are discussed in detail in section 5.7.

We let, as usual, xi (n) - (x (n),... (n)) denote the x-vector

stored in the memory of processor i at time n. We also assume that each
1i M . ..

processor i stores in its memory another vector (A (n),... '. (n)) with
1

its estimates of-,..., aj . We do not require that a message be
ax. x.

1 1
transmitted at each time stage and we allow communication delays. So,

let

ki
p (n) = the time that a message with a value of xk was sent

from processor k to processor i, and this was the last such

message received no later than time n.

ki jk
q (n) = the time that a message with a value of _ was sent

from processor k to processor i, and this was the last

such message received no later than time n.

For consistency of our notation we let S

p (n) = q (n) = n, Vi, Vn. (5.6.7)

With the above definitions, we have:

-- (n) = (( ki(n)), Vn, V(k,i) e E, (5.6.8)

. - . ".

Ak xk kk

k (n) (x k(q ki(n))) , 'In, V(i,k) 8SE.(569

Equations (5.6.8), (5.6.9) together with

Si M
x n ) x n 3n (5.6.10)j-l

................- .. ...... *.. .

~~~~. . ....... . . ..... . . . .. . .. .. * *. .. . .

• . o • . .. * . . * *.



[ -230- -

C.

specify completely the asynchronous decentralized algorithm to be

studied.

As in Theorem 5.3.1 (for the specialization case), we assume that

the time between consecutive commuications and the communication delays

are bounded. However, we allow the bounds to be different for each pair . 6

of processors and type of message:

ik%- i

Assumption 5.6.1: For some constants Pik Qik
S

n - ik < p ik (n) < n, V(i,k) e E, Vn, (5.6.11)

Qi ikI
n < q (n) <_n, V(k,i) e E, Vn . (5.6.12)

ik i
Note that we may let P = Q = 0, to recover a synchronous algorithm.

The result that follows states that the algorithm converges, if the

time between consecutive communications plus communication delays

between any two processors is not too large compared to the degree of

coupling of their subproblems.

Theorem 5.6.1: Suppose that for each i

2 M M k.
J1KKiPJ+Qk+P + K ). (5.6.13)

Yi mli kl =I- i"

1 2 14
Let z (n) - ( 1 (n) , x 2 (n) ,..., ~XM W). Then

linm x (z(n)) = 0, Vi. (5.6.14)

Proof: Let s (n)= An and note that
k=l

x iC(n+l) x x.(n) - "s i (n ) •(5.6.15)

S

.. i',? 2 l l l i - i - .i i~ i~i - i. i : iii i . - i. i• . . . : - . " i. ; i 1 :. '. . ".. •i i''
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From a Taylor series expansion for J we obtain:

M
J(z(n+l)) < J(z(n)) - y. (z(n))s. (n)+-

M X.

2= j=1

:i J (z (n)) -Zy.1s.(n) 12 + j zn) s.(n) I- Js(n) i+

+ +- m 2(J K.jjIs,(n) 12 (5.6.16)

Using (S. 6.9),

m k
[- (z (n)) s s(n)i~ [.:. (z (n)) -[L (n)I

k=1 1 k 1

M 
k1j Kz.(xn) !- k (q(fl))) 56.

k=ij= ax. 3

r- -

* Now note that

k =i j jk ki

n-i
ki Y.Is3(m)I (5.6.18)

* Hence,

JI~ ~ ) < _~ ) - I .s(n12+ 1 1 2 (JI Kij)Isi(n 12 +

n- Ki i j S()-s(~ (5.6.19)
*m k~ J1 m-n ik _P
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Using the inequality

1) 1i )l 2  2 )2yiy Is i (n ) l I s j (m ) I < 2  I n) + yj2 s m , (5.6.20) -- -

and sunmming (5.6.19) for different values of n, we obtain

n M 6
J(z (n+1)) .J (z (0)) - 1 Y ils i () 12 +

2--0 i=1

n M 1 2 M2
+ 2 (i i. Isi()I 2 +

Z=0 i-1 (j=i

n M 21 (-
+ I I I j (Y i 1 + y2 1si (m) 12

2£:0 i=l k=l j=l m=£-Qkipjk

4 (5.6.21)

Note that

n ,- 1 (Y 1 . t 1 2 S ) 2I £IQki-pjk 7i si ( )  +

9.=O~. -|t- -

<~ ~ ~~~~k (k+jk)I[2 2k2
1 n Qk n 21I 29i) P 21 ()12 <

91=0= £=~ttu+1

1 nk k 1 S (j)1 2 + Y2i s () 2  (62

= (PI + k) Is (y !  (5.6.22) -We now use (5.6.22) to rewrite the last iterated sun in (5.6.21) as o ni

n -- - , ". L "1 k .icPik+Qkitys.iI 2
-i-i k=l1 )1

t'.0 i-i k-i j-1~2 (..3

Using (5.6.23) in (5.6.21) and collecting terms, we have

4
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n M2M
J(z(n+l)) < J(z(0)) + [ Isi(£)I2 [Yi+y K.. M

- 9=O i=l = .-

1 2 M k jk ki ik kj) (.2+ iP + + + (5.6.24) "."
k i j=l 

.,We now use (5.6.13) and conclude that

n

X Is.1(tI V< 0 vi,n, (5.6.25)

We may finally use inequalities (5.6.17) and (5.6.18) to obtain

(5.6.14).g

We close this section with a few remarks:

1. The bounds provided by (5.6.13) are sufficient for convergence

but they are not tight, nor necessary. In particular, the first

inequality in (5.6.16) is not tight, even if J is a quadratic function,

because it does not take into account the signs of the entries in the

Hessian matrix of J. It is also conceivable that inequality (5.6.20)

could be improved by taking into account the fine structure of the

problem.

It is known [Bertsekas, 1983] that a decentralized algorithm of a

similar type may converge in certain special cases, even if the

~ik ik -__

*i's are held fixed while the bounds Pi, Q are allowed to be

arbitrarily large. So, the gap between the sufficient conditions

(5.6.13) and the necessary conditions may be substantial. Further

research might narrow this gap.

2. The convergence rate of the decentralized algorith should be

ik ikexpected to deteriorate as the bounds Pi, Q increase. A characterization

of the convergence rate, however, seems to be a fairly hard problem.

•, %

1
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5.7 TOWARDS ORGANIZATIONAL DESIGN

We have argued earlier that a central theme J :sign of

decentralized systems is the question "who should ..icate to whom,

what and how often". In this section we discuss our results (mainly

those of section 5.6) in the context of the above question.

It has been often suggested that the behavior of a boundedly

rational human decision maker (or econcnic agent) may be modeled as a

descent-type iterative algorithm. Proceeding along the same lines, we

may view distributed descent (e.g. pseudo-gradient) algorithms as a

model of adjustment or as a behavioral model in a hman organization.

4 This coincides with the models of Arrow and Hurwicz (19601 for adjustment

in economic markets and of Meerkov [19791 for societies of animals.

Other algorithms from mathematical programming (e.g. the Dantzig-Wolfe

decomposition) have been proposed as models of the budget-allocation

process in a divisionalized company.

Making the assumption that an iterative algorithm describes the

behavior of the members of an organization, let us now place ourselves

in the position of the designer of an organization. His task is to

create a chart prescribing the flow of information between the

* decision-makers. Let us assume that the objective of the organization

is the minimization of a certain organizational cost which is the sum

of the costs faced by each division. To each division, there corresponds

0 a decision-maker who is knowledgeable enough about the structure of the

problem he is facing, to the extent that given a tentative decision

(or operating point) he is able to change his decision in a direction

0 which results to improvement. We also assume that the divisions are
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interacting in some way; so that the decisions of one decision maker

may affect the costs of another division. It follows that a decision

maker who is interested in the well-being of the entire

organization needs to take into account two types of information, coming

from other divisions:

(i) "What everybody else is doing". (Because their decisions

affect what is a "good" decision for my subproblem.)

(ii) "How do my decisions influence them". (That is, I need to

take into account the side-effects of my decisions on other divisions).

Moreover, since the organization is assumed to undergo a process of

change and adjustment, this information has to be updated, from time

to time, so as to keep up with the changes that have occured. However,

this updating occurs in a fairly asynchronous manner, because it is 0

unreasonable to assume that decision makers in an organization make

changes in a synchronized manner and that they inform each other each

time they make a change.

It should be clear that the above described setting closely resembles

the algorithm studied in Section 5.6. In particular, messages of

component x. from processor i carry the information of "what
1i

everybody else is doing" and messages A. carry the information of

how processor j influences the i-th division.
, el

Having established this relationship between the organizational

problem and the mathematical description, we proceed to the main

question, "who should communicate to whom, what, how often". We address

each component of this question separately: .

* .' ** .. *...

. .* . '
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(i) Who should communicate to whom? Clearly, a pair of decision

makers should communicate if and only if their divisions interact in

some way. Mathematically, whether two divisions interact or not may

be seen from the graph G that was constructed in Section 5.6. Messages

should flow along the edges of that graph.

(ii) What should there be communicated? This is also an easy question

(at least in our framework). If (i,j) e E (that is x. influences JJ)

decision maker i should inform j of his decisions and j should "reply"

to i how he is affected by these decisions.

(iii) How often should they communicate? It is intuitively obvious S

that the frequency of communications between two decision makers should

be proportional to the degree of coupling between their subproblems.

While this statement is, in general, hard to make mathematically precise,

it may be effectively studied in the framework that we have introduced:

the "degree of coupling between divisions" is quantified in terms of

the bounds K. on the second derivatives of the costs; the frequency
iii

of communications are also quantified in terms of the bounds P

Finally, these are coupled together, via the sufficient conditions of

Theorem 5.6.1, which prescribes the frequency of communications in terms 5

of interconnection strengths and the speed of adjustment yi.

We may summarize the above discussion by saying that (for the above

assumed model of behavior in cooperative organizations), the approach

of Section 5.6 may be used to design an organizational structure,

that is, prescribe the nature of communication flows. It must be

pointed out, however, that Theorem 5.6.1 defines an entire admissible

* 5-.
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set of organizational structures. Choosing a particular element of

this set requires more study of the effect of the bounds P3 Q'] on

the convergence rate of the algorithm.

One final remark on organizational design. It is conceivable that

the structure of the optimization problem slowly changes with time,

and so do the bounds Kk., although in a time scale slower than the

time scale of the adjustment process. In such a case, the bounds P

Qi should also change. This leads to a natural two-level organizational

structure: At the lower level, we have a set of decision makers

continuouslyadjusting their decisions and exchanging messages.At a higher

k
level, we have a supervisor who monitors changes in K. and accordingly

instructs the low-level decision makers to adjust their communication

rates. Note that the supervisor does not need to know the details of

the cost function; he only needs to know the degree of coupling between

the divisions. This seems to reflect the actual structure of existing

organizations. Low level decision makers are "experts" on the

problems directly facing them, while higher level decision makers only

know certain structural properties of the overall problem and make

certain global decisions, e.g. setting the communication rates.

Another possibility is to let the low-level decision makers monitor

the couplings K. and accordingly adjust the communication rates by

themselves, without wating for instructions from above. This essentially

amounts to another decentralized algorithm (superimposed on the origi-

nal one) which aims at solving the set of inequalities (5.6.13) of

Theorem 5.6. 1.

* 6|

* -|
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A further topic for research relevant to organization theory is

the following: given the mathematical framework we have introduced,

are there any generic properties of particular organizational structures?

For example, if we have a hierarchy (that is the graph G of section 5.6

is a tree) does the adjustment process have any specific properties -

which are structurally different than those for general graphs?

5.8 OTHER POSSIBLE APPLICATIONS S

Routing in Communication Networks

The problem of (quasi-static) routing of messages in a communication

network, may be formulated as a nonlinear programming problem, whose

objective is to minimize some performance criterion related to the

delays in the transmission of messages through the network (Cantor and

Gerla, 19741. There are plenty of reasons for which one would like to

have this problem solved in a decentralized way. Certain decentralized

algorithms have been proposed [Gallager, 1977; Gafni and Bersekas, 1983] - -

but most often convergence is proved under an assumption of strict

synchronism, which is undesirable and unrealistic. Our approach may be

used, however, to prove convergence under more realistic assumptions,

tolerating a fair amount of asynchronism. A small modification of

our results and proofs would be needed, however, to handle problems

with inequality constraints, because such constraints are present in

communication network problems.0

As a more specific application one may cons'.d.r the algorithm of

Gafni and Bertsekas [1983] for routing in communication networks

utilizing virtual circuits. This algorithm admits a convenient on-line

t A result of this type has been recently obtained for a gradient projection
algorithm (Tsitsiklis and Bertsekas, 1984].

0 - " - "... *"
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decentralized implementation and, under certain assumptions, yields

approximately optimal routing strategies, even within the class of

dynamic strategies. We strongly conjecture that the same is true

for the asynchronous version of this algoritm.

Parallel Computation

Many architectures for parallel computation have been proposed

recently, ranging from general purpose multi-processors to special

purpose VLSI architectures. Together comes, of course, an effort to

develop good parallel algorithms that suit the available architectures.

Consider an optimization problem with the structure assumed in

Section 5.6 and suppose that we have available a multi-processor

architecture: each processor is assumed to be capable of storing one

of the additive terms 6 of the cost function and evaluate its partial

derivatives at a given point. We also assume that the processors are

arranged in a graph which coincides with the one induced by the structure

of the cost function (see Section 5.6).

Given this architecture, we considered, in Section 5.6, both

synchronous and asynchronous algoritlus for the same problem, which we

now compare:

The main disadvantages of the synchronous algorithm are the following:

(i) Synchronism. This requires a synchronization protocol which may

introduce substantial overhead and, therefore, be practically undesirable. .

(ii) Bottlenecks caused by communication delays. If there is

some pair of processors (i,j) such that the delay of messages transmitted

I.
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from i to j is excessively large (compared to the delay of other messages),

then all processors should remain idle until the message is received by

processor j, and only then could they proceed to the next round of

computation. Therefore, the speed of the algorithm is determined by

the largest communication delay and processors may have to remain idle

a large fraction of time.

(iii) Excessive Communication Requirements. At each stage of the

algorithm, a message must be transmitted along each arc in the associated

graph. This may be problematic, especially if communications capacity is

a scarce resource, as is often the case in VLSI architectures. Moreover, ]
if many messages are routed using a common bus, large delays, and there- i

fore bottlenecks, may result.

We now indicate how all the above mentioned problems are alleviated

by-the asynchronous algorithm that we introduced in Section 5.6: First,

it has no synchronization requirements. Moreover, the proof of Theorem

5.6.1 may be easily modified to handle the case in which processors

are allowed not to update, once in a while (see

Corollary 5.3.1.) This could capture the possibility that certain

processors perform computations faster than others, or that their

individual clocks do not run at the same speed. Second, and most

important, our asynchronous algorithm allows communication delays and

infrequent communications, without creating bottlenecks: If processor
0

i. has not received the value of some component that it needs for its -

own computations, it keeps computing using a value for that component

it had received some time in the past. So, it will update slightly
0

71
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in the wrong direction, but this may be substantially better than not

updating at all.

Of course, there is a certain tradeoff: if comunications become

too infrequent and delays too large, while the step-size is held

constant, the convergence rate of the algorithm worsens or the algorithm

need not converge at all. It is an open research topic how to handle

this tradeoff. It is intuitively clear - at least if the Hessian

matrix of the cost function is diagonally dominant in some sense and

communication delays are not too large - that the asynchronous algorithm

will be faster than the synchronous one, but more research is needed,

4 including numerical experimentation.

5.9 SUMMARY OF PROBLEMS FOR FUTURE RESEARCH

In the preceding Sections we have mentioned or alluded to certain I

problems, related to the ones studied in this chapter, which are

potential topics for future research. In this Section we put them

together, for easier reference, and to place them into perspective.

Since this is mainly a "classification" section, we will be very brief

and the reader should consult earlier sections for more details. The

problems outlined below fall into three general categories: a) Simple

modifications of results in this chapter; b) New research directions

of general (theoretical) nature; c) Applications in specific fields.

.. "

U?
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1. Obtain convergence results for distributed algorithms for constrained

optimization, in a setting similar to that of Section 5.3.

2. Obtain convergence results for algorithms in which there are no bounds

on the time between consecutive communication, but communications are

"event-driven": a message is transmitted whenever a substantial change occurs.

Compare, theoretically or through simulation, such algorithms with the old

ones, as well as with the corresponding centralized (synchronous) algorithms.

3. Assume that the cost function J to be minimized is convex and see whether

something special may be said, in view of the fact that the combining process

consists of forming convex combinations.

4. Obtain precise results on the convergence rate of decreasing step-size

distributed algorithms.

5. Modify Theorem 5.4.1 so as to be valid even if an associated ODE has only

a bounded domain of attraction.

6. Prove analogs of Theorems 2 and 3 of Ljung [1977a] for distributed

algorithms.

7. Investigate theoretically and/or with simulations the convergence rate of

the gradient algorithm of Section 5.6. Also, obtain convergence conditions

tighter than those of Theorem 5.6.1 and possibly narrow the gap between

0 necessary and sufficient conditions for convergence.

8. Rn simulations of distributed identification algorithms to evaluate their

performance, especially during the initial transient period. Also, find

more struczures for distributed identification to which our results may be

applied.

p.
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9. Use results on algorithms for constrained optimization for optimal

routing and flow control in data communication networks.

10. Apply the results of Section 5.6 to problems of designing the pattern of

communications, either for the purpose of speeding up parallel computation

(in the context of Section 5.8) or for the purpose of designing a divisionlized

organization.

11. Consider two-level organizations in which the higher level sets the rate

of communications, while the lower lovel executes a distributed optimization

algorithm (see Section 5.7).

12. Examine whether certain organizational structures (e.g. hierarchies) have

any specific properties which reflect themselves on properties of the correspon-

ding distributed algorithms (see Section 5.7).

5.10 SUMMARY AND CONCLUSIONS

A broad class of deterministic and stochastic iterative algorithms admit

asynchronous decentralized implementations which retain the desirable convergence

properties of their centralized (or synchronous) counterparts. The main require-

ments for convergence are that the time between consecutive transmission of messages,

as well as communication delays, are not too large, when compared to the natural

time scale associated with the algorithm. For algorithms with decreasing step-

size, this allows communications to become more and more infrequent as the

algorithm progresses.

For a class of optimization problems consisting of a set of coupled sub-

problems, we have shown that communication requirements depend, in a quantifiable

way on the degree of coupling between subproblems.

.1
4 • ,5.' , i~ -
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Our results and, more generally, our line of approach may be useful in .

several different settings. For example, in parallel computation, in organiza-

tional design, in decentralized signal processing or in routing for data

communication networks.

Some of the advantages of asynchronous algorithms are: there are no

synchronization requirements, which makes implementation easier; bottlenecks

to the speed of the algorithm, caused by communication delays, are relieved;

finally, there may be savings in the total number of exchanged messages, so

that overloading of communication channels is avoided.

0i
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CHAPTER 6: A GLOBAL VIEW

6.1 OVERVIEW

The results in this report have been already reviewed and discussed, at several

places. Instead of an additional review, we discuss in this Section the main concep-

tual lines which link together the various pieces in our study.

What our results have in comnmon, is that (almost) all refer to static decision

problems (estimation or identification problems being a special case). The word "static"

"static" is used here to distinguish from those problems in which we are interested in

decentralized feedback control of a dynamical system. However, even though the under-

lying decision problems are static, time enters in our study in two ways: a) It may

be the case that the information relevant to the problem is not obtained all at once,

but sequentially; so, better decisions are being evaluated as more data become available;

b) even if all data become available at once, a solution to the decision problem need

not be obtained instantly, but through an iterative process of adjustment.

We first considered the case in which all relevant data become available at time

zero and we investigated the question whether decisions may be evaluated instantly,

without any communications. If not, we exclude the possibility of centralizing infor-

mation by direct transmission of all data; rather, we consider sequential schemes for

transfering information and evaluating decisions (decentralized protocols). Given that

optimal protocols are hard to design, we consider a few specific (ad-hoc chosen) classes S

of protocols and address two types of questions: a) What happens when a specific protocol

and rule for updating decisions is employed and b) What are the communication require-

ments of such a decentralized scheme in order to guarantee smooth and desirable opera- 0

tion (e.g. convergence).

The class of protocols that we have studied could not be exhaustive. Specific

real-world applications might require drastically different ones. However, we have S

. *-. .* . * ° * * .
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focussed on fairly general and universally applicable ones, as witnessed by the wide

range of possible applications we have suggested in earlier Chapters.

6.2 AN ORGANIZATIONAL VIEW

Recall that in Section 2.2 we had offered an abstract and schematic picture of

the operation and evolution of real world organizations. We suggested there that such

a picture could guide the selection of research topics. We now indicate the correspond-

ence between some of the issues raised in Section 2.2 and our results.

In small and simple organizations, many decisions are being made without commu-

nicating. This corresponds to the problems studied in Chapter 3. We have seen,

however, that silent coordination leads to hard problems. Consequently, apart from

small and simple decision problems, communications become necessary, even if redundant.:..

A common situation in which a set of decision makers have to communicate is when they

have to agree on something. Chapter 4 effectively addresses such situations.

As the organization grows, it ceases being optimal and some decision makers start

changing their mode of operation so as to improve performance. As their operation -"

changes, they need- and do- inform those decision makers who should be concerned about

such changes. This corresponds to a decentralized adjustment process, of the type

studied in Chapter 5. Finally, as the organization becomes even more complex, higher

levels of decision making are introduced who know who should be concerned about what

and set up the necessary information flows. Such two-level schemes remain to be studie.. "

0
in the future.

I.

*- •

*-. . °



-247-

6.3 GENERAL AREAS FOR FUTURE RESEARCH

Several problems which are closely related to our study have been already

suggested in the main body of this report and will not be repeated here. We will sug-

gest, however, some broader directions which seem to be of particular interest. -• a

From a mathematical perspective, the problem "who should communicate to whom,

what, etc." may be viewed as a problem of decentralized complexity theory. A lot of

progress in this direction is being made, mainly in the computer science literature.

Systems theorists, however, are more often concerned with continuous rather than com-

binatorial problems. This leads to the question whether a decentralized continuous

complexity theory (possibly along the lines of Nemirovsky and Yudin [1983], Traub and

Wozniakowsky, [1980]) is feasible. Some interesting issues concern the convergence

rate of decentralized algorithms and the tradeoff with the number of communications.

Given the possibility of coding an arbitrary amount of information in messages contain- 5

ing real numbers, this line of research will probably encounter some non-trivial issues

of modelling of decentralized computation.

A second area of inquiry relates to organizational issues, hierarchical algorithms,

whereby the higher levels dictate the information flows, or event-driven algorithms,

in which communication protocols are not fixed in advance, but depend on the state of

the environment. .

A third area of inquiry could concern the nature of the (implicit) information

exchange, when a set of decision makers observe the actions of other decision makers, *

with different information. This would be an extension of the results in Chapter 4 to .

situations in which the objective of the decision makers is not necessarily to reach

consensus. Links with game theory may be investigated, especially when we have decision

makers possessing different models of the situation.

4 .. .
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APPENDIX A
m0

Proof of Lemma 5.2.1: We only need to prove the Lemma for each component

separately, since (5.2.2) corresponds to a decoupled set of linear systems. .

We may therefore assume that there is only one component; so, the subscript Z

will be omitted and (nlk) becomes a scalar.

The coefficient 0 (njk) being the impulse response of the linear system

(5.2.2) is determined by the following 'experiment" let us fix a processor j

h hand some time k; let x (1)=O, Vh, s (m)=O, Vh,m, unless if h=j and m-k in

which case we let J(k)s j (k)=v, some nonzero element of H. For all times n and

for all processors i, x (n) will be a scalar multiple of v. This proportionality

factor is precisely equal to D1 3 (n~k). Since this experiment takes place in a

one-dimensional subspace of H, we may assume -without loss of generality- that H

is one-dimensional and that v-=1. We then have, for the above "experiment",

iii ii3(nk) = x (n), Vi,n. A trivial induction based on (5.2.2) and using (5.2.3)

shows that x (n)>O, Vi,n, which proves (5.2.8).

For inequality (5.2.9) we consider a different "experiment": let us fix

h hsome time k and let x (1)=O, Vh, s (m)=0, Vm,h, unless if m=k in which case

h hwe let y (k)s (k)=l, Vh. (H is still assumed one-dimensional). We then use
(5.2.2) and (5.2.4) to show by a simple inductive argument that xi(n)<l, Vi,n

which concludes the proof of part (i).

For the proof of the remaining parts of the Lemma we first perform a reduc-

tion to a simpler case. It is relatively easy to see that we may assume, with-

out loss of generality, that communication delays are nonzero. For example, we

could redefine the time variable so that one time unit for the old time variable

. - .. • o . ,
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corresponds to two time units for the new one and so that any message that

had zero delay for the original description has unit delay for the new descrip-

tion. If any of the Assumptions 5.2.1, 5.2.2, 5.2.3, 5.2.4 holds in terms

of the old time variable, it also remains true with the new one.

Next, we perform a reduction to the case where all messages have zero

delay, as follows: for any (i,j)eE, we introduce a finite set of dummy processors,

between i and j (see Fig. A.1) which act as buffers. Any message from i to j

is first transmitted to a buffer processor (with zero delay) which holds it for

time equal to the desired delay and then transmits it to j, again with zero

delay. (So, whenever a buffer processor h receives a message, it lets

hi
a (n)=l). The buffer processor which is to be employed for any particular

message is determined by a round-robin rule. Note that for each pair (i,j)eE

the number of buffer processors that needs to be introduced is equal to the

maximum communication delay for messages from i to j, which has been assumed

finite.* Note also that the buffer processors are non-computing ones and have

in-degree equal to 1. 0

It is easy to see that if Assumptions 5.2.2, 5.2.3 are valid for 7]
the original description of the algorithm, they are also valid for the above

S
introduced augmented description, possibly with a different choice of constants.

Assumption 5.2.1 also remains valid except for part c(iii) which may be 1
violated. (If in Figure A.1 processor j had originally in-degree equal to 1, it

now has in-degree equal to 4, but there is nothing in our assumptions that

guarantees that a j (n)>, Vn). We have, nevertheless, the following condition:

* This procedure is equivalent to a state augmentation for the linear system

(5.2.2), as discussed in Section 5.2.1.

*. S- ~ .:,.. .. ;!iii i!. . i :ii . : -. i. i :: i i ~ ~:iii i _ ; 2
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Assumption A.l: For any processor i with in-degree larger than 1, either
1. Assumption 5.2.lc(iii) holds, or

2. All predecessors of i are non-computing, have in-degree 1 and a common

predecessor.

From now on, we assume, without loss of generality, that communication

delays are zero, provided that we replace Assumption 5.2.lc(iii) by Assumption

A.l.

Let A(n), ((nk) be the matrices with coefficients a 13(n), )13(nlk),

respectively. Because of the zero delay assumption it is easy to see that
n-1*D(nlk) n11 A(m), n>k+l.*

m=k+l

We first prove the desired results under Assumptions 5.2.1 and 5.2.2.

By combining Assumptions 5.2.lc(i) and 5.2.2, note that there exists a constant

B such that, for any (i,j)eE and any time interval I of length B, there exists

some teI such that a i(t)>(%> 0. (These are times that i communicates to j.)

Let us fix a computing processor j and some time k. By relabelling, let

us assume that j=l. We will show by induction (with respect to a particular

numbering of the processors) that for any processor i, there exists some a.>0,

independent of k, such that 'i (nlk)>cti, for all ne[k+(i-l)B+l, k+MB]=Ii.

To start the induction, consider first the case i=l and notice that

n-1

1(nlk)> n all(t) n-k-I> aMB i>0, VneT l

t=k+l

*Since each A(n) is a "stochastic matrix (nonnegative entries, each row sums to 1),
* questions of convergence of f(nlk) are equivalent to questions about the long-

run behavior of a finite (time-varying) Markov chain.

*I
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Suppose now that a subset S of the processors has been numbered

{l,...,i-l}, for some i>2, and that the induction hypothesis has been proved

for all processors in S. We show that it is always possible to find a new

processor in V\S, rename it to i and prove the induction hypothesis for i as

well.

Consider the set Q of processors qOS such that (p,q)eE, for some peS.

If Q= , then S is the set of all processors (because of Assumption 5.2.1b) and

we are done. If not, we choose one processor from Q, and rename it to i,

subject to the following restriction: we choose a processor with in-degree more

than one only if no processor with in-degree equal to one belongs to Q.

We now prove the induction hypothesis for processor i. Let h6S be some

predecessor of i, belonging to S. Then, h<i and, by the induction hypothesis,

Dhl (nJk)>ah>O, Vne hII. Moreover, for some te[k+(i-2)B+l,...,k+(i-l)B]

ih ilwe have a (t)>t and consequently, (t+lk)>ctch

We first suppose that i has in-degree 1. We prove by induction on n, for

*il A :
ne[t+l, ... ,k+MB]I that D (n k =

inJ ~cch = tO ned

ii ih hl ii ilOi (n+l k) a (n) (D(nik) + a (n) ( l (nlk)> ."."

hl il> min{Ohl(nlk),O i (nlk)}> rain {ah }=c~

Suppose now that i has in-degree more than 1 and that Assumption 5.2.lc(iii)

holds. Then,
S

il r- aM>0, VnEI.1 (nlk)> (n) i(t+lk)>-t h i n

Kv ..- . -. . . . . . . . .. ". - - .

~~~~~~~~- ---L;" " "-- --- - - - - - - -------" ,-: - - - ----.---------- "" - -" .-
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The last possibility is that i has in-degree more than 1 (hence all

processors in Q have in-degree more than 1) and Assumption 5.2.lc(iii) fails.

Then the set of predecessors of i (denoted by U) has a single common predecessor,

denoted by j. Since ieQ, some heU must belmngto S. Since any heU is non-

computing, we have hil and its predecessor j must belong to S. Now, for any peU,

p does not belong to Q (since it has in-degree I) and therefore, pes. We conclude

that all predecessors of i belong to S (UC). We now perform an easy induction

ilA
on n, for ne[t+l,. ..,k+MB] to show that 0 (nlk)>a min } >0. Indeed,

heU
hh 2h

il (n+llk) = a ih(n) (nlk)> min 0hl (nlk)>

heuU{ i } heUU{i}

> min{ i, min h}} = iheU

This completes our inductive argument.

We may now conclude that $D(k+MBIk) is a stochastic matrix with the

property that all entries in some column (corresponding to any computing processor)

are positive and bounded away from zero by a constant a>O which does not depend on

k. We combine this fact with Lemma A.1 below to conclude that the assertions of

Lemma 5.2.1 are true.

Lemma A.l: Consider a sequence {D } of nonnegative matrices with the properties

that:

(i) Each row sums to 1.

(ii) For some >0 and for some column (say the first one), all entries of D ,

for any n, in that column are larger or equal than a.

.- ,, * ,,.. •* ,,:* , - . ., . ...- .. . . * ,. ,, .: .> . . ... .,,-- .., . .. . .* . * .- . .- - - - * . ,, * * . ., . -. • , . ,. ,,, ..
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Then,

n
* a) D=lim R D exists.

n- k=l k

b) All rows of D are identical.

c) The entry in the first column of D is bounded below by o&.

d) Convergence to D takes place at the rate of a geometric progression.

Proof of Lemma A.l: Given any vector x=(xl,...,x) we decompose it as x=y+ce,

where c is a scalar, eis the vector with all entries equal to 1 and y has one

4 zero entry and all other entries are nonnegative. (So c equals the minimum of

the components of x.

n
Let x(n) = R D x(O), Vn and x(n)=y(n)+c(n)e. It is easy to see that

k=l k

M
Ily(n+l) 11. < (1-t) ly(n) I., where 11-1100 denotes the max-norm on R , which

shows that y(n) converges geometrically to zero. Moreover, c(n)< c(n+l)< c(n) +

I-y(n) JI, which shows that c(n) also converges geometrically to some c. Hence,

n
x(n) converges geometrically to ce. Since this is true for any x(O)e Rn , parts
(a), (b), (d) of the Lemma follow. Part (c) is proved by an easy induction, for

the finite products of the D k's and, therefore, it holds for D as well. 0C

We now consider the case where Assumption 5.2.2 is replaced by 5.2.3.

The key observation here is that during an interval of the form [Bln8 , B (n+l)8]

a bounded number of messages is transmitted; hence, A(k)=I, except for a bounded

number of times in that interval. If we redefine the time variable so that time

is incremented only at communication times, we have reduced the problem to the case

of Assumption 5.2.2. The only difference, due to the change of the time variable,

1 .q

-: :_; i. :., + : - 2, .* .. + _.. / ..... ; ... . . i, - , . : : _ :: : :-: :. ,:-+ / :_, , + ''J : ,
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is in the rate of convergence. Under Assumption 5.2.2, jj4 (njk)-Ok)jj decreases

by a constant factor during intervals of constant length. This implies that,

under Assumption 5.2.3, j jl(nlk)-'(k)jl decreases by a constant factor during

intervals of the form [B t ,B (t+c) 3, for some appropriate constant c. Therefore,
11

if B t=k and B (t+m) 8=n, we have j jI$njk)-$(k) 11< Bdm1c, for some B>O, d e[,1).

Eliminating t and solving for m, we obtain "

which finally yields

1 //
n' - I, ) ,.-' .7

Let 6=1/8 and d=d , to recover the desired result. U
0

o I

_ *.. ...-

* . * . .
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